Non-equilibrium dynamics in superspin glass systems

Slides:



Advertisements
Similar presentations
Imaging the Magnetic Spin Structure of Exchange Coupled Thin Films Ralf Röhlsberger Hamburger Synchrotronstrahlungslabor (HASYLAB) am Deutschen Elektronen.
Advertisements

FIRB Microsistemi e Nanomateriali Magnetici Tematica T4 Films e Multistrati Nanocompositi Magnetici Multistrato Laboratorio Superfici M. Carbucicchio,
Physics 201H 11/18/2005 Why thin films Size matters
Spin glass behaviour in a new ternary intermetallic, U 3 Fe 4+x Al 12-x A.P. Gonçalves 1, O. Tougait 2, H. Noël 2 1 Departamento de Química, Instituto.
Exchange Bias: Interface vs. Bulk Magnetism
X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland J. Bansmann.
Magnetic Memory: Data Storage and Nanomagnets Magnetic Memory: Data Storage and Nanomagnets Mark Tuominen UMass Kathy Aidala Mount Holyoke College.
Montserrat García del Muro, Miroslavna Kovylina, Xavier Batlle and
CMSELCMSEL Hanyang Univ. Differences in Thin Film Growth Morphologies of Co-Al Binary Systems using Molecular Dynamics Simulation : In cases of Co on Co(001),
Training of the exchange bias effect reduction of the EB shift upon subsequent magnetization reversal of the FM layer Training effect: - origin of training.
Magnetic Materials.
Topics in Magnetism III. Hysteresis and Domains
Superparamagnetism(SP)M) Properties and applications Kang Liu Boston University.
Magnetism in Chemistry. General concepts There are three principal origins for the magnetic moment of a free atom: The spins of the electrons. Unpaired.
Content Origins of Magnetism Kinds of Magnetism Susceptibility and magnetization of substances.
Brillouin Light Scattering Studies of Magnetic Multilayers Cyrus Reed, Milton From Department of Physics and Astronomy, Western Washington University What.
Magnetism PA2003: Nanoscale Frontiers Introduction Force exerted by a magnetic field Current loops, torque, and magnetic moment Sources of the magnetic.
Micromagnetics 101. Spin model: Each site has a spin S i There is one spin at each site. The magnetization is proportional to the sum of all the spins.
Magnetic Data Storage. 5 nm Optimum Hard Disk Reading Head.
Magnetic Properties of Materials
Science and Technology of Nano Materials
Magnetic Material Engineering. Chapter 6: Applications in Medical and Biology Magnetic Material Engineering.
Permanent Magnets based on Fe-Pt Alloys P.D. Thang, E. Brück, K.H.J. Buschow, F.R. de Boer Financial support by STW.
STRUCTURE AND MAGNETIC PROPERTIES OF ULTRA-THIN MAGNETIC LAYERS
Increased surface area on nanoparticles
Thin layers (2D) of nanoparticles are formed by evaporating dispersions of nanoparticles on a solid substrate Three-dimensional assemblies are prepared.
Study of spin dynamics in ferrite-based MNPs
[1] The Chemical Society of Japan (Ed.): Ultrafine Particle Science and Application, JSSP, 28 (1985). [2] B. D. Plouffe et al. Journal of Magnetism and.
Magnetic Properties Scott Allen Physics Department University of Guelph of nanostructures.
Some experimental approaches to study the aging phenomena in spin glasses Tetsuya Sato Keio University Yokohama, Japan.
Experimental Approach to Macroscopic Quantum Tunneling of Magnetization in Single Domain Nanoparticles H. Mamiya, I. Nakatani, T. Furubayashi Nanomaterials.
Andreas Scholl, 1 Marco Liberati, 2 Hendrik Ohldag, 3 Frithjof Nolting, 4 Joachim Stöhr 3 1 Lawrence Berkeley National Laboratory, Berkeley, CA 94720,
NAN ZHENG COURSE: SOLID STATE II INSTRUCTOR: ELBIO DAGOTTO SEMESTER: SPRING 2008 DEPARTMENT OF PHYSICS AND ASTRONOMY THE UNIVERSITY OF TENNESSEE KNOXVILLE.
Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Jianwei Dong, J. Q. Xie, J. Lu, C. Adelmann, A. Ranjan, S. McKernan
Atomic Scale Understanding of the Surface Intermixing during Thin Metal Film Growth 김상필 1,2, 이승철 1, 정용재 2, 이규환 1, 이광렬 1 1 한국과학기술연구원, 계산과학센터 2 한양대학교, 재료공학부.
The Story of Giant Magnetoresistance (GMR)
Complex Epitaxial Oxides: Synthesis and Scanning Probe Microscopy Goutam Sheet, 1 Udai Raj Singh, 2 Anjan K. Gupta, 2 Ho Won Jang, 3 Chang-Beom Eom 3 and.
Magnetic Nanoclusters
Atomic Scale Computational Simulation for Nano-materials and Devices: A New Research Tool for Nanotechnology Kwang-Ryeol Lee Future Technology Research.
Magnetic Data Storages (1)Magnetic recording (a) Generalation (why SNR ∝ N 1/2, M r samll ) (b) Longitudinal and Perpendicular (c) Thermal stability Antiferromagnetic.
  Satyendra Prakash Pal DEPARTMENT OF PHYSICAL SCIENCES
Spin Valves: - larger MR values then the AMR-based devices - exchange energy should be large (> 0.2 erg/cm -2 ) - blocking temperature > 300C - effective.
Monte-Carlo Simulations of Thermal Reversal In Granular Planer Media Monte-Carlo Simulations of Thermal Reversal In Granular Planer Media M. El-Hilo Physics.
Ferromagnetic Quantum Dots on Semiconductor Nanowires
Single Molecular Magnets
CHARACTERIZATION OF NATURAL AND ENGINEERED NANOPARTICLES: SHAPE, SIZE AND CHEMICAL COMPOSITION Lucia Manangon
Aronzon B.A. PRB, 84, (2011) Rylkov V.V. Tugushev V.V. Nikolaev S.N. .
0-D, 1-D, 2-D Structures (not a chapter in our book!)
Slow Dynamics of Magnetic Nanoparticle Systems: Memory effects P. E. Jönsson, M. Sasaki and H. Takayama ISSP, Tokyo University Co-workers: H. Mamiya and.
Effects of Arrays arrangements in nano-patterned thin film media
Magnetic properties of (III,Mn)As diluted magnetic semiconductors
Epitaxial films of tetragonal Mn 3 Ga: magnetism and microstructure F. Casoli 1,*, J. Karel 2, P. Lupo 3, L. Nasi 1, S. Fabbrici 1,4, L. Righi 1,5, F.
Miral Shah Course: Thermodynamics and kinetics of confined fluids
Structural and Magnetic Properties of MgxSrxMnxCo1-3xFe2O4 Nanoparticle ferrites Nadir S. E. Oman School of Chemistry and Physics, University of KwaZulu-Natal,
2Institute of Ceramics and Glass-CSIC, Madrid, Spain
Re-entrant antiferromagnetism in the exchange-coupled IrMn/NiFe system
High-temperature ferromagnetism
Plasma synthesis and processing
Magnetic and Hyperthermia Measurements
Group Members: William Ballik Robbie Edwards Alex Klotz Gio Mitchell
Didier Hérisson, Michael Östh and Per Nordblad Uppsala University
Experimental investigation of Superspin glass dynamics
Slow Dynamics in Mesoscopic Magnets and in Random Magnets
Ferromagnetism.
Collective Dynamics of Nanoscale Magnets
2005 열역학 심포지엄 Experimental Evidence for Asymmetric Interfacial Mixing of Co-Al system 김상필1,2, 이승철1, 이광렬1, 정용재2 1. 한국과학기술연구원 미래기술연구본부 2. 한양대학교 세라믹공학과 박재영,
Co-Al 시스템의 비대칭적 혼합거동에 관한 이론 및 실험적 고찰
Sang-Pil Kim and Kwang-Ryeol Lee Computational Science Center
Fluorinated h-BN as a magnetic semiconductor
Presentation transcript:

Non-equilibrium dynamics in superspin glass systems D. Peddis and D. Fiorani E-mail:david.peddis@ism.cnr.it Institute of Matter of Structure (ISM) National Research Council (CNR) Roma - Italy david.peddis@ism.cnr.it– SIF 2015

david.peddis@ism.cnr.it– SIF 2015 Magnetic Materials: The dimension is very important permanent micron nanoparticles clusters molecular individual magnets particles clusters spins S = 10 20 10 8 6 5 4 3 2 10 1 magnetic moment multi - domain single - domain david.peddis@ism.cnr.it– SIF 2015

From Multi to mono-domain structure A= Exchange energy density K = Anisotropy energy constant Material dc (nm) Fe 15 Co 35 -Fe2O3 30 SmCo5 750 Kittel_PRB_1946 david.peddis@ism.cnr.it– SIF 2015

CoFe2O4 Nanoparticles (TEM image) C. Cannas, D. Peddis et al Chem Mater. 2010 david.peddis@ism.cnr.it– SIF 2015

Biomedical Applications ( MRI, drug delivery) Supermagnetism Strong interactions Eint>>Ea Collective magnetic state Weak interactions Ea(tot) = Ea +Eint Eint<<Ea Modified SP Superferromagnetism (SFM) Super spin glass (SSG) Interparticle interaction energy (Eint) Biomedical Applications ( MRI, drug delivery) david.peddis@ism.cnr.it– SIF 2015

david.peddis@ism.cnr.it– SIF 2015 Introduction david.peddis@ism.cnr.it– SIF 2015

D. Peddis et al Chem Mater 2013 Introduction Frustration Randomness SuperSpin Glass Spin Glass S. Nakameae, Thesis T<Tg D. Peddis et al Chem Mater 2013 david.peddis@ism.cnr.it– SIF 2015

david.peddis@ism.cnr.it– SIF 2015 SG/SSG david.peddis@ism.cnr.it– SIF 2015

david.peddis@ism.cnr.it– SIF 2015 MnFe2O4 david.peddis@ism.cnr.it– SIF 2015

david.peddis@ism.cnr.it– SIF 2015 Structural characterization Oil Water NsDABS SEM <D> XRD (nm) 2 Surface Area (m2/g) 278 TEM <D> BET (nm) 4 david.peddis@ism.cnr.it– SIF 2015

Interparticle Interactions Id (DCD remanent magnetization after saturation) Ir ( IRM remanent magnetization after demagnetization) M Plot M < demagnetizing interaction M = 0, no interaction M > magnetizing interaction david.peddis@ism.cnr.it– ICSM 2014

david.peddis@ism.cnr.it– SIF 2015 M Vs.T : ZFC FC Tmax _ZFC (K) 45.3 (3) Tmax _FC (K) 43.1 (3) Tirr (K) 50.0 (2) Tirr/Tmax _ZFC 1.1 david.peddis@ism.cnr.it– SIF 2015

Measurement done in Uppsala D. Peddis, D. Fiorani, et al. in prep MnFe2O4 SuperSpinglass Power law 0 4.210-13 Tg 45.3 (3) α 8.6 (2) SG systems Measurement done in Uppsala (P. Nordblad. R Mathieu) D. Peddis, D. Fiorani, et al. in prep david.peddis@ism.cnr.it– SIF 2015

david.peddis@ism.cnr.it– SIF 2015 Mössbauer Spectroscopy TBM (K) Mössbauer 62 m (s) 510-9 TmaxZFC(K) SQUID 45 m (s) 10 - 100 david.peddis@ism.cnr.it– SIF 2015

david.peddis@ism.cnr.it– SIF 2015

D. Peddis, D. Fiorani, et al. in prep MnFe2O4 SuperSpinglass Power law 0 1.910-12 Tg 45.3 (3) α 8.6 (2) SG systems david.peddis@ism.cnr.it– SIF 2015 D. Peddis, D. Fiorani, et al. in prep

T>Glassy Temperature SG/SSG: Non equilibrium dynamic (NED) T>Glassy Temperature T =T’(<Tg; dT/dt0) T =T’ (<Tg dT/dt0) david.peddis@ism.cnr.it– SIF 2015

david.peddis@ism.cnr.it– SIF 2015 Aging Measurements (ZFC) H = 0 H =10 Oe 150 K 5 K H = 10 Oe 5 K 60 K ZFC reference curve H = 0 H =10 Oe 150 K 20 K tw= 3 h 5 K H = 10 Oe 5 K 60 K ZFC memory curve david.peddis@ism.cnr.it– SIF 2015

david.peddis@ism.cnr.it– SIF 2015 Aging Measurements (TRM) H = 10 H =0Oe 150 K 5 K H = 0 5 K 60 K TRM reference curve H = 10 H =0 Oe 150 K 20 K tw= 3 h 5 K H = 0 Oe 5 K 60 K TRM memory curve david.peddis@ism.cnr.it– SIF 2015

First evidence of principle of superposition for superspin glass SG systems R. Mathieu, PRB, 2001 david.peddis@ism.cnr.it– SIF 2015

M. Bellusci, et al , Polymer Intern, 2009 MnFe2O4 nanoparticles + Albumin Aqueous dispersion of the ferrite and albumin david.peddis@ism.cnr.it– SIF 2015

david.peddis@ism.cnr.it– SIF 2015 MnFe2O4 FM NPs@Matrix david.peddis@ism.cnr.it– SIF 2015

david.peddis@ism.cnr.it– SIF 2015 Samples FM Nps AFM Matrix Substrate PEEK 25 μm Buffer Layer Ag 150-160 Ǻ Film ------ 2000 Ǻ Capping Layer 200-250 Ǻ FM NPs Diamag. matrix C. Binns (Leicester, UK) Cluster source MBE source david.peddis@ism.cnr.it– SIF 2015

david.peddis@ism.cnr.it– SIF 2015 Co@Mn; Co@Ag Co Nps Mn Matrix Substrate PEEK 25 μm Buffer Layer Ag 150-160 Ǻ Film ------ 2000 Ǻ Capping Layer 200-250 Ǻ Co NPs Ag matrix Log-normal distribution of particle size (measured in situ by a quadrupole filter) C. Binns (Leicester, UK) 1.8 nm 280 atoms david.peddis@ism.cnr.it– SIF 2015

david.peddis@ism.cnr.it– SIF 2015 Exchange bias effect ZFC FC Co/CoO TN < T < TC T < TN H david.peddis@ism.cnr.it– SIF 2015

Devices governed by Interface Exchange Coupling HARD DISK Magnetoresistive read heads MRAMs Spin valve structure david.peddis@ism.cnr.it– SIF 2015

david.peddis@ism.cnr.it– ICSM 2014 Co@Mn; Co@Ag Co Nps Mn Matrix Substrate PEEK 25 μm Buffer Layer Ag 150-160 Ǻ Film ------ 2000 Ǻ Capping Layer 200-250 Ǻ Co NPs Ag matrix Log-normal distribution of particle size (measured in situ by a quadrupole filter) C. Binns (Leicester, UK) 1.8 nm 280 atoms david.peddis@ism.cnr.it– ICSM 2014

david.peddis@ism.cnr.it– SIF 2015 ZFC FC Measurements H = 100 Oe Co@Ag: assembly of non interacting particles Superparamagnetic behaviour: Tmax 17 K Curie-law behaviour of c (FC) Tirr/Tmax = 4.7 Co@Mn:spin-glass like behaviour Tmax of c(ZFC): 65 K Plateau of c(FC) below 30 K Tirr/Tmax = 1.2 david.peddis@ism.cnr.it– SIF 2015

david.peddis@ism.cnr.it– SIF 2015 AC Measurements Co@Ag (n = 0.3 – 30 Hz) Co@Mn (n = 0.3 – 30 Hz) Co@Ag Arrhenius law t = t0exp(KaV/KbT) t0 = 6x10-11s Ka=2x107erg/cm3 Co@Mn Power law t = t0 [Tg/(Tmax(n)) – Tg)]a a = 8.2; Tg = 62 K; t0 = 10-9 s In SG 7 < a < 9 david.peddis@ism.cnr.it– SIF 2015

Non-Equilibrium dynamic (NED) H = 0 H =100 Oe 150 K 5 K H = 100 Oe 5 K 80 K ZFC reference curve H = 0 H =100 Oe 150 K 50 K Tw= X 5 K H = 100 Oe 5 K 80 K ZFC memory curve david.peddis@ism.cnr.it– SIF 2015 D. Peddis et al, JPCS; 2010

M. Vasilakaki, K.N. Trohidou, D. Peddis, et al , PRB 2013 NED: MonteCarlo Simulation M. Vasilakaki, K.N. Trohidou, D. Peddis, et al , PRB 2013 david.peddis@ism.cnr.it– SIF 2015 D. Peddis et al, JPCS; 2010

NED: Interface Exchange coupling Without Dipolar Interaction with Interface exchange coupling without Dipolar Interaction Without Interface exchange coupling M. Vasilakaki, K.N. Trohidou, D. Peddis, et al , PRB 2013 david.peddis@ism.cnr.it– SIF 2015

M. Vasilakaki, K.N. Trohidou, D. Peddis, et al , PRB 2013 NED: Role of exchange Bias M. Vasilakaki, K.N. Trohidou, D. Peddis, et al , PRB 2013 david.peddis@ism.cnr.it– SIF 2015

david.peddis@ism.cnr.it– SIF 2015 Exchange Bias and SSG 30 K david.peddis@ism.cnr.it– SIF 2015

Summary MnFe2O4 Co@Mn (VVF 4.7%) Dynamical properties in a wide range of frequencies Principle of superposition (NED) Role of IEC in NED SSG and EB david.peddis@ism.cnr.it– SIF 2015

david.peddis@ism.cnr.it– SIF 2015 D. Fiorani. E. Agostinelli, CNR, Rome, Italy A.M.Testa, G. Varvaro, S. Laureti, E. Patrizi, N. Domingo CNR* –Spain C. Binns, S. Baker Univ. of Leicester, UK J. Blackmann Univ. of Reading, UK P. Trohidou, M. Vasalikaki Demokritos, Athens, Greece P. Nordblad, R. Mathieu, M. Hudl Uppsala University david.peddis@ism.cnr.it– SIF 2015

M. Vasilakaki, K.N. Trohidou Monte Carlo Simulation M. Vasilakaki, K.N. Trohidou david.peddis@ism.cnr.it– SIF 2015

david.peddis@ism.cnr.it– SIF 2015 Monte Carlo david.peddis@ism.cnr.it– SIF 2015