Tamás Vörös, Győző György Lajgút, Gábor Magyarfalvi, György Tarczay

Slides:



Advertisements
Similar presentations
Structures and spectroscopic properties calculated for C 6 H 7 + and its complexes with Ne, Ar, N 2, or CO 2 Peter Botschwina and Rainer Oswald Institute.
Advertisements

Vibrational Spectroscopy of Cold Molecular Ions Ncamiso Khanyile Ken Brown Lab School of Chemistry and Biochemistry June 2014.
The elusive question of tautomerism in cytosine: Quantum chemical and matrix isolation spectroscopic investigations Gábor Bazsó, Géza Fogarasi, Péter G.
Vibrational Spectroscopy I
Measurement and Computation of Molecular Potential Energy Surfaces Polik Research Group Hope College Department of Chemistry Holland, MI
 PART Requirements for Spectroscopic Techniques for Polymers 1. High resolution 2. High sensitivity (>1%) 3. High selectivity between molecular.
Near-Infrared Spectroscopy of Interstellar and Planetary Ice Analogs
Spectroscopy.  Spectroscopy is the study of the interaction of electromagnetic radiation with matter. There are many forms of spectroscopy, each contributing.
Matrix isolation and computational study of iso-difluorodibromomethane (F 2 CBr-Br): A route to molecular products in CF 2 Br 2 Photolysis Lisa George,
Thomas J. Preston, Maitreya Dutta, Brian J. Esselman, Michael A. Shaloski, Robert J. M C Mahon, and F. Fleming Crim UW-Madison Aimable Kalume, Lisa George,
Vibrational Relaxation of CH 2 ClI in Cold Argon Amber Jain Sibert Group 1.
Infrared Spectroscopy of Alanine in Solid Parahydrogen Shin Yi Toh, Ying-Tung Angel Wong, Pavle Djuricanin, and Takamasa Momose Department of Chemistry.
In-situ Photolysis of Methyl Iodide in Solid Para-hydrogen and Solid Ortho-deuterium Yuki Miyamoto 1, Mizuho Fushitani 2, Hiromichi Hoshina 3, and Takamasa.
Pulsed-jet discharge matrix isolation and computational study of Bromine atom complexes: Br---BrXCH 2 (X=H,Cl,Br) OSU 66 th International Symposium on.
UV/Vis Absorption Experiments on Mass Selected Cations by Counter- Ion Introduction in an Inert Neon Matrix Nathan Roehr University of Florida 67 th International.
W I S S E N T E C H N I K L E I D E N S C H A F T  Januar 13 Name und OE, Eingabe über > Kopf- und Fußzeile.
Vibrational Predissociation Spectra in the Shared Proton Region of Protonated Formic Acid Wires: Characterizing Proton Motion in Linear H-Bonded Networks.
IR spectra of Methanol Clusters (CH3OH)n Studied by IR Depletion and VUV Ionization Technique with TOF Mass Spectrometer Department of Applied Chemistry.
György Tarczay, Gábor Magyarfalvi
Detecting Hydrogen Atoms in Solid Parahydrogen using FTIR Spectroscopy RD03 - Cold Quantum Systems 1015 McPherson Lab 9:22 am Thursday, June 21,
Mohammed Gharaibeh, Fumie X. Sunahori, and Dennis J. Clouthier Department of Chemistry, University of Kentucky Riccardo Tarroni Dipartimento di Chimica.
1 Vilnius University Faculty of Physics, Dept. of General Physics and Spectroscopy CONFORMATIONAL ANALYSIS OF 1-ALKENE SECONDARY OZONIDES BY MEANS OF MATRIX.
Hydrogen-bond between the oppositely charged hydrogen atoms It was suggested by crystal structure analysis. A small number of spectroscopic studies have.
Time-resolved Fourier transform infrared emission spectra of HNC/HCN K. Kawaguchi & A. Fujimoto Okayama University.
Itaru KURUSU, Reona YAGI, Yasutoshi KASAHARA, Haruki ISHIKAWA Department of Chemistry, School of Science, Kitasato University ULTRAVIOLET AND INFRARED.
Spectroscopic investigation of temperature effects on the hydration structure of phenol cluster cation Reona YAGI, Yasutoshi KASAHARA, Haruki ISHIKAWA.
Ramya Nagarajan, Jie Yang and Dennis J. Clouthier A spectroscopic study of the linear-bent electronic transitions of jet-cooled HBCl and BCl 2 And The.
INFRARED AND ULTRAVIOLET SPECTROSCOPY OF JET-COOLED 2-BENZYLPHENOL: I STRUCTURE AND LARGE-AMPLITUDE TORSIONAL MOTION CHIRANTHA P. RODRIGO, CHRISTIAN W.
2 3 With UV irradiation: Cl 2 + h  2 Cl* Cl* + H 2 (v = 0)  HCl + H Cl* + matrix  Cl Cl + H 2 (v = 0)  no reaction With IR irradiation: H 2 (v =
INVESTIGATION OF VAN DER WAALS COMPLEXES IN A FREE EXPANSION OF C 2 H 2 /X (X=RARE GAS) (X=Rg) USING CW CAVITY RING-DOWN SPECTROSCOPY IN THE OVERTONE RANGE.
~ ~ DETERMINATION OF THE TRANSITION DIPOLE MOMENT OF THE A - X
The Performance Of A Continuous Supersonic Expansion Discharge Source
The Performance Of A Continuous Supersonic Expansion Discharge Source
Dissociation of Molecular Ions Studied by
Electronic spectroscopy of trapped PAH photofragments
& DETECTION AND CHARACTERIZATION OF THE STANNYLENE (SnH2) FREE RADICAL.
LASER SPECTROSCOPY AND DYNAMICS OF THE JET-COOLED AsH2 FREE RADICAL
Intramolecular charge transfer (ICT) in two phenylpyrrol derivatives: PP and PBN Two similar molecules but a different behavior Danielle Schweke Baumgertan.
Carlos Cabezas and Yasuki Endo
PHOTODISSOCIATION OF FORMIC ACID ISOLATED IN SOLID PARAHYDROGEN Y
Wei Li, Mingfei Zhou Fudan University, Shanghai, China
INFRARED SPECTROSCOPY OF DISILICON-CARBIDE, Si2C
Doppler-free two-photon absorption spectroscopy of vibronic excited states of naphthalene assisted by an optical frequency comb UNIV. of Electro-Communications.
69th annual international symposium on molecular spectroscopy
Kanupriya Verma, K.S.Viswanathan Department of Chemical Sciences
Tamás Vörös, György Tarczay
Chirped Pulse Microwave Spectroscopy on Methyl Butanoate
The Interstellar Detection of HSCN in Sgr B2(N)
Tokyo Univ. Science Mitsunori Araki, Yuki Matsushita, Koichi Tsukiyama
Processes Using Matrix-Isolation Spectroscopy
Simultaneous Deposition of Mass Selected Anions and Cations: Improvements in Ion Delivery for Matrix Isolation Spectroscopy Michael E. Goodrich and David.
Quantum diffusion controlled chemistry: the H + NO reaction
Bob Grimminger and Dennis Clouthier
(Kobe Univ. ) Takumi Nakano, Ryo Yamamoto, Shunji Kasahara
Introduction Spectroscopy is an analytical technique which helps determine structure. It destroys little or no sample. The amount of light absorbed by.
Using IR Spectroscopy to Probe the Temperature Dependence of the H + N2O Reaction in Parahydrogen Crystals Fredrick Mutunga and David T. Anderson Department.
The Rotational Spectrum of cis- and trans-HSSOH
Vibrational Spectroscopy and Gas-Phase Thermochemistry of the Model Dipeptide N-Acetyl Glycine Methyl Amide International Symposium of Molecular Spectroscopy.
Structure Determination: Mass Spectrometry and Infrared Spectroscopy
from W. Demtröder “Molecular Physics”
High Resolution Infrared Spectroscopy of Linear Cluster Ions
IR Spectra of CH2OO at resolution 0
Stability of the HOOO Radical via Infrared Action Spectroscopy
Observation of Trans-Ethanol and
Threshold Ionization and Spin-Orbit Coupling of CeO
Diagnosis of a High Harmonic Beam Using
A Theoretical Search for an Electronic Spectrum of the He–BeO Complex
Jay C. Amicangelo, Ian Campbell, and Joshua Wilkins
from W. Demtröder “Molecular Physics”
71st ISMS UV Photodissociation Spectroscopy of Temperature-Controlled Hydrated Phenol Cluster Cation Itaru KURUSU, Reona YAGI, Yasutoshi KASAHARA, Haruki.
Presentation transcript:

Tamás Vörös, Győző György Lajgút, Gábor Magyarfalvi, György Tarczay Photochemical generation of H2NCNX, H2NNCX, H2NC(NX) (X = O, S) in low-temperature matrices Tamás Vörös, Győző György Lajgút, Gábor Magyarfalvi, György Tarczay Eötvös Loránd University, Laboratory of Molecular Spectroscopy Budapest, Hungary 2017

Outline of the presentation Introduction, goals of our studies Computational results Experimental results [NH2, C, N, O] system [NH2, C, N, S] system Summary

Outline of the presentation Introduction, goals of our studies Computational results Experimental results [NH2, C, N, O] system [NH2, C, N, S] system Summary

Introduction Relative abundance of covalent pseudohalogen isomers Properties of interstellar or circumstellar clouds Sgr B2: HNCO, HOCN HNCS, HSCN TCM-1: HCNO 67P/Churyumov-Gerasimenko: CH3CNO

Introduction H2N-R -CNX -NCX -XCN -XNC -C(NX) X = O X = S 500 °C pyrolysis Ar, 10K [1] H2NNCO mass-spectrometry [2] H2NCNS [1] J. H. Teles, G. Maier, Chem. Ber. 122, 745, 1989. [2] R. Flammang et al., J. Phys. Chem. 100, 17452, 1996.

Goals of our studies To study the [NH2, C, N, X] (X = O, S) isomers using quantum-chemical methods to compute: - equilibrium structures, relative energies - harmonic and anharmonic wavenumbers, IR intensities and UV excitation energies using matrix-isolation technique to: - generate and spectroscopically identify new [NH2, C, N, X] isomers from 3,4-diaminofurazan, and 3,4-diaminothiadiazole

Matrix isolation setup Vacuum system Rotational pump Turbom. pump Cryostat Cryostat Probe Cooling system Sample preparing system

Outline of the presentation Introduction, goals of our studies Computational results Experimental results [NH2, C, N, O] system [NH2, C, N, S] system Summary

[NH2, C, N, X] (X = O, S) isomers fc CCSD(T)/cc-pVTZ equilibrium structures and ZPVE corrected relative energies

IR wavenumbers and intensities of [NH2, C, N, O] isomers fc CCSD(T)/cc-pVTZ harmonic wavenumbers corrected by B3LYP/cc-pVTZ anharmonic contributions (in cm-1) fc CCSD(T)/cc-pVTZ harmonic intensities (in km mol-1) H2NNCO H2NCNO H2NOCN H2NONC H2NC(NO) 3348 (6.0) 3417 (35) 3353 (5.5) 3360 (4.8) 3564 (58) 3316 (2.0) 3365 (20) 3275 (0.9) 3286 (0.6) 3458 (54) 2235 (853) 2328 (228) 2243 (85) 2063 (43) 1794 (270) 1618 (15) 1610 (25) 1561 (32) 1595 (30) 1579 (25) 1385 (15) 1378 (252) 1292 (5.8) 1311 (4.9) 1394 (34) 1304 (2.9) 1183 (52) 1208 (83) 1199 (77) 1034 (8.3) 1067 (70) 858 (13) 1072 (51) 862 (14) 962 (10) 847 (8.3) 609 (202) 807 (4.7) 817 (13) 614 (56) 650 (35) 471 (17) 607 (2.1) 529 (23) 468 (189) 588 (22) 497 (1.9) 446 (20) 441 (29)

IR wavenumbers and intensities of [NH2, C, N, S] isomers fc CCSD(T)/cc-pVTZ harmonic wavenumbers corrected by B3LYP/cc-pVTZ anharmonic contributions (in cm-1) fc CCSD(T)/cc-pVTZ harmonic intensities (in km mol-1) H2NNCS H2NCNS H2NSCN H2NSNC H2NC(NS) H2NN(CS) 3399 (15) 3460 (55) 3456 (29) 3456 (33) 3559 (51) 3379 (18) 3313 (1.8) 3384 (51) 3370 (19) 3365 (12) 3445 (50) 3296 (7.1) 2000 (622) 2250 (50) 2170 (<1) 2033 (176) 1792 (159) 1690 (14) 1598 (21) 1598 (20) 1580 (9.4) 1590 (17) 1587 (34) 1617 (24) 1320 (36) 1153 (<1) 1099 (<1) 1098 (<1) 1218 (70) 1310 (8.1) 1139 (59) 1121 (187) 842 (52) 875 (24) 1048 (14) 1043 (46) 897 (131) 322 (286) 657 (15) 608 (27) 677 (19) 843 (88) 701 (24) 573 (11) 553 (75) 563 (204) 548 (85) 615 (13) 524 (61) 455 (0.34) 504 (34) 478 (18) 416 (2.2) 415 (1.5) 410 (14) 444 (174)

[NH2, C, N, X] (X = O, S) – NH2CN complexes B3LYP/cc-pVTZ equilibrium structures H2NCNO : H2NCN H2NNCO : H2NCN H2NC(NO) : H2NCN H2NCNS : H2NCN H2NNCS : H2NCN H2NC(NS) : H2NCN

Outline of the presentation Introduction, goals of our studies Computational results Experimental results [NH2, C, N, O] system [NH2, C, N, S] system Summary

MI-IR spectra of 3,4-diaminofurazan in argon in krypton B3LYP/aug-cc-pVTZ harmonic wavenumbers and IR intensities

MI-UV spectrum of 3,4-diaminofurazan in argon deposited 20 min photolysis at 254 nm + 15 min photolysis at BBUV

Photolysis of 3,4-diaminofurazan in argon a) 3 hours 213 nm photolysis – deposited b) 3 hours 239 nm photolysis – deposited c) and d) H2NCNO:H2NCN and H2NNCO:H2NCN (B3LYP/cc-pVTZ anharmonic wavenumbers and intensities) e) H2NC(NO) (fc CCSD(T)/cc-pVTZ harmonic wavenumbers + B3LYP/cc-pVTZ anharmonic contributions (IR intensities: harmonic fc CCSD(T)/cc-pVTZ))

Photolysis of 3,4-diaminofurazan in krypton a) 3 hours 213 nm photolysis – deposited b) 3 hours 239 nm photolysis – deposited c) and d) H2NCNO:H2NCN and H2NNCO:H2NCN (B3LYP/cc-pVTZ anharmonic wavenumbers and intensities) e) H2NC(NO) (fc CCSD(T)/cc-pVTZ harmonic wavenumbers + B3LYP/cc-pVTZ anharmonic contributions (IR intensities: harmonic fc CCSD(T)/cc-pVTZ))

Photolysis of 3,4-diaminofurazan in argon H2NCNO:H2NCN H2NNCO:H2NCN H2NC(NO)

Outline of the presentation Introduction, goals of our studies Computational results Experimental results [NH2, C, N, O] system [NH2, C, N, S] system Summary

MI-IR spectra of 3,4-diaminothiadiazole in argon in krypton B3LYP/aug-cc-pVTZ harmonic wavenumbers and IR intensities

MI-UV spectrum of 3,4-diaminothiadiazole in argon deposited 15 min photolysis at 254 nm + 15 min photolysis at BBUV

Photolysis of 3,4-diaminothiadiazole in argon a) 3 hours 221 nm photolysis – deposited b) 3 hours 280 nm photolysis – deposited c) H2NC(NS) (fc CCSD(T)/cc-pVTZ harmonic wavenumbers + B3LYP/cc-pVTZ anharmonic contributions (IR intensities: harmonic fc CCSD(T)/cc-pVTZ)) d) and e) H2NNCS:H2NCN and H2NCNS:H2NCN (B3LYP/cc-pVTZ anharmonic wavenumbers and intensities)

Photolysis of 3,4-diaminothiadiazole in krypton a) 3 hours 221 nm photolysis – deposited b) 3 hours 280 nm photolysis – deposited c) H2NC(NS) (fc CCSD(T)/cc-pVTZ harmonic wavenumbers + B3LYP/cc-pVTZ anharmonic contributions (IR intensities: harmonic fc CCSD(T)/cc-pVTZ)) d) and e ) H2NNCS:H2NCN and H2NCNS:H2NCN (B3LYP/cc-pVTZ anharmonic wavenumbers and intensities)

MI-IR spectra of 3,5-diamino-1,2,4-thiadiazole in argon in krypton B3LYP/aug-cc-pVTZ harmonic wavenumbers and IR intensities

MI-UV spectrum of 3,5-diamino-1,2,4-thiadiazole in argon deposited 30 min photolysis at 254 nm + 15 min photolysis at BBUV

Photolysis of 3,5-diamino-1,2,4-thiadiazole a) 3 hours 240 nm photolysis – deposited in argon b) 3 hours 250 nm photolysis – deposited in krypton c) HNNCHS:H2NCN (MP2/cc-pVTZ harmonic wavenumbers + B3LYP/cc-pVTZ anharmonic contributions (IR intensities: harmonic MP2/cc-pVTZ))

Photolysis of 3,5-diamino-1,2,4-thiadiazole in argon H2NCNS:H2NCN c) H2NC(NS) H2NNCS:H2NCN d) HNNCHS:H2NCN

Outline of the presentation Introduction, goals of our studies Computational results Experimental results [NH2, C, N, O] system [NH2, C, N, S] system Summary

Summary [1] H2NCNO H2NNCO H2NC(NO) H2NCNS H2NNCS H2NC(NS) HNNHCS H2N-R -CNX -NCX -XCN -XNC -C(NX) X = O ! X = S [1] T. Voros, G. G. Lajgut, G. Magyarfalvi, G. Tarczay, J. Chem. Phys. 146, 024305, 2017.