The KATRIN Neutrino Mass Experiment

Slides:



Advertisements
Similar presentations
I want thank Aldo Covello for the 11 Spring Seminars on Nuclear Physics in nice areas of the Sorrento Peninsula and the Islands. I was participating in.
Advertisements

Penning-Trap Mass Spectrometry for Neutrino Physics
outline introduction experimental setup & status
HQL2004 June 1. Jochen Bonn Institut für Physik, Johannes Gutenberg-Universität, Mainz, Evidence for neutrino masses Neutrino mass measurements Tritium.
1 CRACOW EPIPHANY CONFERENCE ON NEUTRINOS AND DARK MATTER January 2006, Cracow, Poland ● Introduction ● Neutrino mass determination ● The Karlsruhe.
JYFLTRAP: Spectroscopy with multi-trap facility Facility Mass purified beams In-trap spectroscopy Future plans.
SUMMARY – SESSION NU-3 ABSOLUTE NEUTRINO MASS SNOWMASS 2013, MINNEAPOLIS AUG 2, 2013 Hamish Robertson, University of Washington Convenors: Ben Monreal,
Technical studies for the HIE- ISOLDE Frontend upgrade Jacobo Montaño Marie Curie Fellow; CATHI Project * The research project has been supported by a.
Prospects for 7 Be Solar Neutrino Detection with KamLAND Stanford University Department of Physics Kazumi Ishii.
MICE: The International Muon Ionization Cooling Experiment Diagnostic Systems Tracker Cherenkov Detector Time of Flight Counters Calorimeter Terry Hart.
Accurate  Spectroscopy for Ultracold Neutrons Jeff Martin University of Winnipeg See also: J.W. Martin et al, Phys. Rev. C (2006) J.W. Martin.
Photoelectron Spectroscopy Lecture 7 – instrumental details –Photon sources –Experimental resolution and sensitivity –Electron kinetic energy and resolution.
Daniele Pergolesi, Institut d’Astrophysique de Paris, Nov 14 th The MARE experiment on direct measurement of neutrino mass Daniele Pergolesi UNIVERSITY.
International Colloquium and Workshop "Ganymede Lander: scientific goals and experiments"
Hamish Robertson, CENPA, University of Washington Direct probes of neutrino mass Neutrino Oscillation Workshop NOW2014, Otranto Italy Sept. 8.
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
Status of the Beamline Simulation A.Somov Jefferson Lab Collaboration Meeting, May 11, 2010.
Diana Parno – July 22, 2008 January PREx Test Run: Compton Photon Analysis Diana Parno Carnegie Mellon University HAPPEX Collaboration Meeting.
KATRIN - Karlsruhe Tritium Neutrino Experiment - measuring sub-eV neutrino masses G. Drexlin, FZ Karlsruhe for the KATRIN Collaboration International Europhysics.
KATRIN - The Karlsruhe Tritium Neutrino Experiment The Karlsruhe Tritium Neutrino Experiment H.H. Telle Department of Physics, University of Wales Swansea.
Zoran Andjelkovic Johannes Gutenberg Universität Mainz GSI Darmstadt Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei (Helmholtz.
TITAN EBIT MCP Detector Assembly Cecilia Leung Undergrad summer student 2007 TRIUMF Summer Student Symposium Tuesday, July
Background from the NIST test The pencil neutron beam (1 mm 2 ) with intensity about 7000 n/sec The beam was completely absorbed in the beam stop with.
LRT2004 Sudbury, December 2004Igor G. Irastorza, CEA Saclay NOSTOS: a spherical TPC to detect low energy neutrinos Igor G. Irastorza CEA/Saclay NOSTOS.
Can we look back to the Origin of our Universe? Cosmic Photon, Neutrino and Gravitational Wave Backgrounds. Amand Faessler, Erice September 2014 With thanks.
NEUTRINO MASS STUART FREEDMAN MEMORIAL SYMPOSIUM BERKELEY, JAN 11, 2014 Hamish Robertson, University of Washington a long wait for a little weight.
1 5-9 October th ICATPP, Como, Italy S. Maltezos NITROGEN MOLECULAR SPECTRA OF AIR FLUORESCENCE EMULATOR USING A LN 2 COOLED CCD S. Maltezos, E.
Absolute neutrino mass scale and the KATRIN experiment Otokar Dragoun for the KATRIN Collaboration Nuclear Physics Institute of the ASCR, Řež
The KATRIN experiment M. Beck Institut Für Kernphysik Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-str Münster Motivation The Experiment.
M. Wójcik for the GERDA Collaboration Institute of Physics, Jagellonian University Epiphany 2006, Kraków, Poland, 6-7 January 2006.
Usage of electron spectrometry A)Studies of nuclear structure, decays and reactions 1) Study of conversion electrons 2) Study of electrons and positrons.
Results from RENO Soo-Bong Kim (KNRC, Seoul National University) “17 th Lomosonov Conference on Elementary Particle Physics” Moscow. Russia, Aug ,
M. Wójcik Instytut Fizyki, Uniwersytet Jagielloński Instytut Fizyki Doświadczalnej, Uniwersytet Warszawski Warszawa, 10 Marca 2006.
Ralf Averbeck Stony Brook University Hot Quarks 2004 Taos, New Mexico, July 19-24, 2004 for the Collaboration Open Heavy Flavor Measurements with PHENIX.
Lecture 3-Building a Detector (cont’d) George K. Parks Space Sciences Laboratory UC Berkeley, Berkeley, CA.
 0 life time analysis updates, preliminary results from Primex experiment 08/13/2007 I.Larin, Hall-B meeting.
KIT - The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Florian Fränkle EPS HEP 2009 Krakow 1 KATRIN: An experiment to.
BSM Group Activities DUNE Collaboration Meeting –ND Physics Jan. 14, 2016 Jae Yu Univ. of Texas at Arlington.
The WITCH Experiment 5th International Symposium on Symmetries in Subatomic Physics June 18-22, 2012 KVI, Groningen G. Ban 1, M. Breitenfeldt 2, V. De.
“Neutrino mass determination”
Reduction of radon background in the KATRIN Experiment
Relativistic Kinematics for the Binding Energy of Nuclear Reactions
Solar gamma-ray and neutron registration capabilities of the GRIS instrument onboard the International Space Station Yu. A. Trofimov, Yu. D. Kotov, V.
The photon A “particle” of light A “quantum” of light energy
Flame Emission Spectrometry
J. Musser for the MINOS Collatoration 2002 FNAL Users Meeting
Study of vacuum stability at cryogenic temperature
Muon Spectroscopy WS, Villigen Nuclear charge radii measurements by collinear laser spectroscopy and Penning trap g-factor experiments: The need for.
Kinematic Determination of Neutrino Mass
Giant Monopole Resonance
CLIC-ILC BDS & MDI work.
Conventional Neutrino Beams Day 2
Amand Faessler, Erice September 2014
Three roads to neutrino masses
How precisely do we know the antineutrino source spectrum from a nuclear reactor? Klaus Schreckenbach (TU München) Klaus Schreckenbach.
Direct Measurements Working Group
The MICROMEGAS detector in CAST
Development of a silicon drift detector system for the TRISTAN project - Future search for sterile neutrinos Tim Brunst1, Luca Bombelli2, Marco Carminati3,
Precision Measurements of Very-Short Lived Nuclei
Radiation and The Geiger-Müller Counter
Precision Measurement of η Radiative Decay Width via Primakoff Effect
KATRIN: A next generation neutrino mass experiment
Review: Probing Low Energy Neutrino Backgrounds with Neutrino Capture on Beta Decaying Nuclei Cocco A, Magnano G and Messina M 2007 J. Cosmol. Astropart.
Impact of neutrino interaction uncertainties in T2K
Monoenergetic Neutrino Beam for Long Baseline Experiments
Triangle Universities Nuclear Laboratory
COherent Muon to Electron Transition (COMET)
What is μ-e Conversion ? μ μ-+(A,Z)→e-+(A,Z) muon decay in orbit
Design, development and test experiments for the Rearsection of KATRIN
Surface analysis techniques part I
Presentation transcript:

The KATRIN Neutrino Mass Experiment Diana Parno Carnegie Mellon University Lake Louise Winter Institute 23 February 2017

The Neutrino Mass Scale Lightest n mass m1 (eV/c2) Neutrino mass mi (eV/c2) Normal hierarchy Lower bound on m2, m3 from oscillation Upper bound from b decay KATRIN design ? (quasidegenerate regime) (Mainz, Troitsk) Diana Parno -- KATRIN Neutrino Mass Experiment

Diana Parno -- KATRIN Neutrino Mass Experiment From T2 to mnb Extract m2nb from fit to spectral shape near endpoint 3H 3He e- ne Almost model-independent mnb = 0 eV mnb = 1 eV 2x10-13 decays in last eV Q = 18.6 keV Diana Parno -- KATRIN Neutrino Mass Experiment

KArlsruhe TRItium Neutrino Intense T2 source (1011 decays/second) Spectrum analysis with electromagnetic filter Design resolution 0.93 eV Design mnb sensitivity: 0.2 eV/c2 at 90% confidence level Leopoldshafen November 2006 Diana Parno -- KATRIN Neutrino Mass Experiment

Putting It All Together 1 e-/sec 103 e-/sec Gaseous T2 source 3He e- ne 3H 1011 e-/sec Electron transport Detect bs Analyze b energy V Monitor energy threshold Diana Parno -- KATRIN Neutrino Mass Experiment

Spectrometer Background 2015 commissioning revealed high backgrounds ~50x higher than design value (10 mcps) Primary mechanism: 210Po decay in wall Secondary particles via sputtering Rydberg atoms (H*) enter flux tube H* ionized via blackbody radiation Low-energy e- created in flux tube! Diana Parno -- KATRIN Neutrino Mass Experiment

Mitigating High Backgrounds Reduction ideas (early) Optimize scanning Enlarge analysis window Increase Bmin Slide from Kathrin Valerius, Marco Kleesiek Diana Parno -- KATRIN Neutrino Mass Experiment

First Light Major milestone: e- transport from rear section to detector KIT Illuminate rear wall Magnetically guide photoelectrons along 70m beamline First all-KATRIN commissioning rdb instruments KIT Last beamline valve opens 14 October 2016 Diana Parno -- KATRIN Neutrino Mass Experiment

Molecular Final-State Distribution Electronic excitations in T atoms Excitations in T2 gas Electronic: 20 eV Vibrational: ~0.1 eV Rotational: ~0.01 eV Beta spectrum depends on excitation energies Vk and probabilities Pk Diana Parno -- KATRIN Neutrino Mass Experiment

Describing T2 Final States Precise ab initio calculations Uncertainty hard to estimate Enters directly into analysis Fackler et al., PRL 55 (1985) 1388 Saenz et al., PRL 84 (2000) 242 Binding energy (eV) Relative probability (%/eV) Calculation LANL mn2 LLNL mn2 1985 -147(79) eV2 -130(25) eV2 2000 (est.) 20(79) eV2 37(25) eV2 Bodine, DSP, Robertson, PRC 91, 035505 (2015) KATRIN needs sFSD to 1% New calculations Initial-state source characterization TRIMS experiment to resolve historical discrepancy Diana Parno -- KATRIN Neutrino Mass Experiment

Some Recent Technical Results Trapping of 220Rn on LN2-cooled copper baffle Hannen et al., Astropart. Phys. 89 (2017) 30 E – qU (eV) Transmission probability Drexlin et al., Vacuum 138 (2017) 165 Sojourn time (s) Baffle temperature (K) Deconvolution method for energy loss in source Diana Parno -- KATRIN Neutrino Mass Experiment

Diana Parno -- KATRIN Neutrino Mass Experiment 2017: A Busy Year Right now: Analysis of commissioning data (up to late 2016) Maintenance, upgrades, software work preparing for: Summer/Fall 2017: System commissioning with 83mKr, H2, and D2 Late 2017: First tritium data And beyond: Early mass results (final sensitivity: 3 beam yrs) Sterile neutrino searches Searches for physics beyond the Standard Model Diana Parno -- KATRIN Neutrino Mass Experiment

Light Neutrino, Bright Future KATRIN has constructed its entire beamline Successful electron transport across 70m Novel background source identified Countermeasures under development Commissioning and systematics studies underway Gearing up for tritium data soon Diana Parno -- KATRIN Neutrino Mass Experiment

The KATRIN Collaboration Carnegie Mellon University Max Planck Institut für Kernphysik, Heidelberg University of Applied Science, Fulda Case Western Reserve University University of Bonn Nuclear Physics Institute of the ASCR University of Mainz CEA/Saclay Complutense University of Madrid University of Münster Massachusetts Institute of Technology University of North Carolina Institute for Nuclear Research, Troitsk Max Planck Institute for Physics, Munich University of Washington Karlsruhe Institute for Technology University of Wuppertal Technical University of Munich Lawrence Berkeley National Lab Primary support from Helmholtz Association; BMBF; DOE Office of Science DE-FG02-97ER41020; Helmholtz Alliance for Astroparticle Physics; Grant Agency for Czech Republic Diana Parno -- KATRIN Neutrino Mass Experiment

T2 Spectroscopy: MAC-E Filter Measure integral spectrum with moving threshold Magnetic Adiabatic Collimation + Electrostatic filter Electrodes T2 source Detector Troitsk (at INR) Mainz Analyzing plane pe (without E field) Diana Parno -- KATRIN Neutrino Mass Experiment

internal radioactivity 40K, … external radioactivity Background Sources Slide from Florian Fränkle vessel wire electrodes e H H* H- internal radioactivity cosmic muons 210Pb, … µ a g NR e BBR field emission e H2 FPD Penning discharge e e insulator processes H+ UV 219Rn g baffle 40K, … external radioactivity Various processes can contribute to the spectrometer background Spectrometer backgrounds were investigated in detail during two measurement phases (SDS1 & SDS2) Diana Parno -- KATRIN Neutrino Mass Experiment