Average Fe Kα emission from distant AGN

Slides:



Advertisements
Similar presentations
ACTIVE GALACTIC NUCLEI X-ray broad--band study A. De Rosa, L. Piro Ginga/ROSAT/ASCA IASF-Roma Universita' di Roma La Sapienza Institute of.
Advertisements

CAHA, 5 Feb 2005XMM-Newton Surveys Xavier Barcons.
Tracing cosmic accretion through the XMM-Newton Medium Survey (XMS) Xavier Barcons On behalf of the AXIS/XMS/SSC team.
A Large Catalogue of Ultraluminous X-ray Source Candidates in Nearby Galaxies Madrid: 2010 DOM WALTON IoA, Cambridge, UK In collaboration with Jeanette.
Radio and X-ray emission in radio-quiet quasars Katrien C. Steenbrugge, Katherine M. Blundell and Zdenka Kuncic Instituto de Astronomía, UCN Department.
Sean Farrell XMM-Newton Survey Science Centre University of Leicester, UK In collaboration with… N. Webb, D. Barret, O. Godet & B. Plazolles – CESR, France.
Statistical analysis of the X-ray emission properties of type-1 AGN in the XMM-2dF Wide Angle Survey Silvia Mateos Leicester University (UK) Leicester.
Swift/BAT Hard X-ray Survey Preliminary results in Markwardt et al ' energy coded color.
Normal Galaxies Sample From 2dF-XMM Wide Angle Survey Jonathan Tedds, Silvia Mateos, Mike Watson, Matthew Page, Francisco Carrera, Mirko Krumpe, Jacobo.
Probing the X-ray Universe: Analysis of faint sources with XMM-Newton G. Hasinger, X. Barcons, J. Bergeron, H. Brunner, A. C. Fabian, A. Finoguenov, H.
The remarkable soft X-ray emission of the Broad Line Radio Galaxy 3C445 BLRG in the Unification Scheme of AGN: Is the circumnuclear gas in BLRG different.
Ringberg Meeting, Apr 05 2dF Spectroscopic Identification of a Southern XMM-Newton Serendipitous Sample Jonathan Tedds (Leicester), Mat Page (MSSL) & XMM-Newton.
High-Resolution X-ray Spectroscopy of AGN Warm Absorbers Rebecca Smith MSSL, UCL with G. Branduardi-Raymont and M. Page.
NGC 2110 Spectroscopy Dan Evans (Harvard), Julia Lee (Harvard), Jane Turner (UMBC/GSFC), Kim Weaver (GSFC), Herman Marshall (MIT)
Obscured and unobscured growth of Super-massive Black Holes Francisco J. Carrera, X. Barcons, J. Bussons, J. Ebrero, M. Ceballos, A. Corral (IFCA, CSIC-UC,
The XMM-Newton hard band wide angle Survey Nicoletta Carangelo and Silvano Molendi (IASF-MI(CNR)) Epic Consortium Meeting Palazzo Steri, Palermo,
Matteo Guainazzi (European Space Astronomy Centre) WHY CAN’T WE?
Conclusions We established the characteristics of the Fe K line emission in these sources. In 7 observations, we did not detect the source significantly.
The Evolution of Quasars and Massive Black Holes “Quasar Hosts and the Black Hole-Spheroid Connection”: Dunlop 2004 “The Evolution of Quasars”: Osmer 2004.
Measuring the black hole spin of GX 339-4: A systematic look at its very high and low/hard state. Rubens Reis Institute of Astronomy - Cambridge In collaboration.
AGN: Testing general relativity (Fe Kα line) and high resolution plasma diagnostics (Warm Absorber) Delphine Porquet MPE, Garching, Germany.
On behalf of the XMM-Newton Survey Science Centre Roberto Della Ceca INAF – Osservatorio Astronomico di Brera,Milan The Cosmological properties of AGN.
Extreme soft X-ray emission from the broad-line quasar REJ R.L.C. Starling 1*, E.M. Puchnarewicz 1, K.O. Mason 1 & E. Romero- Colmenero 2 1 Mullard.
1 A. Streblyanska, G. Hasinger, A. Finoguenov, X. Barcons, S. Mateos, A. C. Fabian A relativistic Fe line in the mean X-ray spectra of type-1 and type-2.
An Accretion Disk Laboratory in the Seyfert Galaxy NGC 2992 Tahir Yaqoob (JHU/GSFC) with Kendrah Murphy (JHU/GSFC), & the Suzaku Team. Some of this work.
X-ray emission properties of BLAGN in the XMM-2dF Wide Angle Survey S. Mateos, M.G. Watson, J. A. Tedds and the XMM-Newton Survey Science Centre Department.
The X-ray mirrors Giovanni Miniutti Institute of Astronomy, University of Cambridge SIMBOL-X May -Bologna.
NGC 3147: a 'true' type 2 Seyfert galaxy without the broad-line region THE X-RAY UNIVERSE Granada, May 28 th 2008 Stefano Bianchi A. Corral 1, F.
A new look at AGN X-ray spectra - the imprint of massive and energetic outflows Ken Pounds University of Leicester Prague August 2006.
X-ray spectroscopy of bright AGN GiorgioMatt & Stefano Bianchi Giorgio Matt & Stefano Bianchi (Dipartimento di Fisica, Università Roma Tre) (Dipartimento.
Observations of Obscured Black Holes
Obscured and unobscured growth of Super-massive Black Holes from the XMM-Newton Medium Survey Francisco J. Carrera, X. Barcons, J. Bussons, J. Ebrero,
Origin of the Seemingly Broad Iron- Line Spectral Feature in Seyfert Galaxies Ken EBISAWA (JAXA/ISAS) with H. INOUE, T. MIYAKAWA, N. ISO, H. SAMESHIMA,
Monitoring the Seyfert Galaxy Mkn766 Continuum and Fe line variability Mkn766 is a highly variable Seyfert 1 galaxy. The richness of.
Are the relativistic Fe lines really relativistic? A systematic analysis of the Fe K line from inner region of accretion disk of Neutron star LMXB with.
A deep view of the iron line and spectral variability in NGC 4051 James Reeves Collaborators:- Jane Turner, Lance Miller, Andrew Lobban, Valentina Braito,
Broad iron lines from accretion disks K. Iwasawa University of Cambridge.
Accretion #3 When is the thin disk model valid? Reynolds number, viscosity Time scales in disk BH spectra Using X-ray spectra to determine BH mass and.
European X-ray CalorimeterUtrecht, October 2004 (Some) astrophysical drivers for a high-resolution imaging X-ray spectrometer Xavier Barcons Instituto.
On the role of relativistic effects in the X-ray variability of AGN Piotr Życki Nicolaus Copernicus Astronomical Center, Warsaw, POLAND Andrzej Niedźwiecki.
Why is the BAT survey for AGN Important? All previous AGN surveys were biased- –Most AGN are ‘obscured’ in the UV/optical –IR properties show wide scatter.
Seeking type 2 QSO amongst bright X-ray selected EXOs Agnese Del Moro University of Leicester, UK In collaboration with: M.G. Watson (UoL), S. Mateos (UoL),
The unusual X-ray spectrum of MCG
Discovery of the X-ray emission from the darkest TeV object HESS J
The X-ray Universe Granada
High energy NLSy 1 galaxies
Lecture 20 Accretion spectrum Gravitational redshift Iron Kα line
X-ray Surveys Lockman Hole Team Giacconi (JHU) Gunn (Princeton)
Confidence contours: 68%, 95%, 99%
NuSTAR + XMM Observations of NGC 1365: A Constant Inner Disc
The Space Density of Compton Thick AGN
M. Ajello (MPE-Garching)
Andrea Comastri (INAF- Oss. Astr. Bologna)
Multi-epoch X-ray observations of Seyfert 1 galaxies
Tracing the Accretion History of the Universe by stacking X-rays from Red Galaxies in the NDWFS Kate Brand, NOAO, Tucson A. Dey, B. Jannuzi, M. Brown,
XMM-NEWTON reveals a dipping black-hole X-ray binary in NGC 55
DISCRETE X-RAY SOURCE LUMINOSITY FUNCTION (LF):
Hard X-ray observations of Extremely Red Objects
Lecture 6: Gamma-Ray Bursts Light extinction: Infrared background.
Time resolved X-ray spectroscopy of NGC 4051
Cosmic evolution of AGN in several X-ray bands
XMM-Newton Observation of the composite SNR G0. 9+0
Active Versus Normal Galaxies
The spectral properties of Galactic X-ray sources at faint fluxes
Black Holes in the Deepest Extragalactic X-ray Surveys
EPIC observations of two GRB afterglows
Yuan Liu and Shuang Nan Zhang
Black Hole Winds: the case of PDS 456
Mentors: Marco Ajello & Masaaki Hayashida
Borislav Nedelchev et al. 2019
Presentation transcript:

Average Fe Kα emission from distant AGN Amalia Corral IFCA(Santander)/OAB(Milano) M.J. Page: MSSL (UCL), UK F.J. Carrera, X. Barcons, J. Ebrero: IFCA (CSIC-UC), Spain S. Mateos, J.A. Tedds, M.G. Watson: University of Leicester, UK A. Schwope, M. Krumpe: Astrophysikalisches Institut Postdam, Germany X-ray Universe 2008, Granada, 27th May 2008

Introduction Inclination angle Maximum-rotating BH Non-rotating BH XRB (X-Ray Background) is known to be composed of discrete sources, most of them are AGN. XRB synthesis models, ingredients: - AGN intrinsic column density and acretion rate distribution and their evolution as a function of Luminosity and redshift. - Average radiative efficiency of accretion onto Supermassive Black Holes -> Measure from Fe line relativistic profile.

Previous Results Local samples: EW(relativistic) ~ 100-200 eV (Guainazzi+06, Nandra+07) Distant AGN -> average or stack many spectra together: EW(relativistic) ~ 400 (type1) - 600(type2) eV (Streblyanska+05,Brusa+05)

Our sample AGN from the AXIS (An International XMM-Newton Survey) and XWAS (XMM-Newton Wide Angle Survey) medium surveys (average flux ~ 5x10-14 erg cm-2 s-1) . Optical spectroscopic identifications (>80 counts 0.2-12 keV): Type 1 AGN: 606 sources Type 2 AGN: 117 sources

Our sample Sample selection: Individual spectra > 80 counts in 0.2-12 keV

Averaging method Fit an absorbed power law above 1 keV rest-frame and unfold the un-grouped spectra: best-fit model. Correct for Galactic Absorption. Shift to rest-frame. Normalize using the 2-5 keV rest-frame band. Rebin to 1000 final counts/bin. Average.

Fit simple power law in 2-10 keV : Results Type 1 AGN > 200000 counts Type 2 AGN ~ 30000 counts Fit simple power law in 2-10 keV : Type 1: Γ=1.92±0.02 Type 2: Γ=1.44±0.02

Broad relativistic profile not clearly present Results Type 1 AGN > 200000 counts Type 2 AGN ~ 30000 counts Broad relativistic profile not clearly present

Simulations 100 simulations (best-fit model) per real spectrum including Poisson counting noise and keeping the same 2-8 keV observed flux, exposure time and calibration matrices as for the real data. Significance contours by removing the 32% (1σ level) and 5% (2σ level) extreme values.

Results ● Simulated continuum ▪ Average spectrum ·· 1σ confidence limit -- 2σ confidence limit ▪ Average spectrum ● Simulated continuum

Results ● Simulated continuum ▪ Average spectrum ·· 1σ confidence limit -- 2σ confidence limit ▪ Average spectrum ● Simulated continuum

Spectral fit Baseline model: 100-simulations continuum: mixture of absorbed power laws. Narrow emission line.

Spectral fit – Type 1 AGN Best-fit model: Baseline model plus neutral reflection: Egaus = 6.36±0.05 keV σgaus = 80±80 eV EWgaus = 90±30 eV i = 60±20º R=0.5±0.20

Spectral fit – Type 1 AGN Best-fit model: Baseline model plus neutral reflection: Egaus = 6.36±0.05 keV σgaus = 80±80 eV EWgaus = 90±30 eV i = 60±20º R=0.5±0.20

EW(broad relativistic line) < 400 eV at 3σ confidence level Spectral fit – Type 1 AGN Best-fit model: Baseline model plus neutral reflection: Egaus = 6.36±0.05 keV σgaus = 80±80 eV EWgaus = 90±30 eV i = 60±20º R=0.5±0.20 EW(broad relativistic line) < 400 eV at 3σ confidence level

Spectral fit – Type 2 AGN Model: Baseline model plus neutral reflection: Egaus = 6.36±0.07 keV σgaus = 80±60 eV EWgaus = 70±30 eV i < 80 R > 0.7

Spectral fit – Type 2 AGN Model: Baseline model plus neutral reflection: Egaus = 6.36±0.07 keV σgaus = 80±60 eV EWgaus = 70±30 eV i < 80 R > 0.7

Spectral fit – Type 2 AGN Model: Baseline model plus Laor line: Egaus = 6.36±0.07 keV Elaor ~ 6.7 keV σgaus = 80±60 eV EWgaus = 70±40 eV EWlaor ~ 300 eV i ~ 60º

Spectral fit – Type 2 AGN Model: Baseline model plus Laor line: Egaus = 6.36±0.07 keV Elaor ~ 6.7 keV σgaus = 80±60 eV EWgaus = 70±40 eV EWlaor ~ 300 eV i ~ 60º

Neutral reflection and Relativistic line give the same fit Spectral fit – Type 2 AGN Model: Baseline model plus Laor line: Egaus = 6.36±0.07 keV Elaor ~ 6.7 keV σgaus = 80±60 eV EWgaus = 70±40 eV EWlaor ~ 300 eV i ~ 60º Neutral reflection and Relativistic line give the same fit

Type 1 AGN: sub-samples Number of counts 2-10 keV > 2x105 allow us to test evolution with different parameters by dividing the sample in 3 subsamples of equal quality (i.e. number of total counts): redshift, flux and luminosity. We found no dependence for the emission features on redshift or flux. Dependence on Luminosity -> Iwasawa- Taniguchi effect?

Type 1 AGN: sub-samples L(0.5-2 keV) (erg s-1) EW narrow line (eV) 1x1042 – 2x1044 190±50 2x1044 – 6x1044 150±80 6x1044 – 6x1046 50±40

Conclusions Narrow emission line significatively detected in Type 1 and Type 2 AGN average spectra. E ~ 6.4 keV, EW ~ 100 eV. Type 1 AGN: No compelling evidence of a Broad component in the average spectrum. Continuum features best represented by a reflection component. Relativistic line upper limit EW<400 eV (3σ confidence). Iwasawa-Taniguchi effect for narrow line component marginally detected. Type 2 AGN: Statistics insufficient to distinguish between a relativistic line and a reflection component.

Conclusions Narrow emission line significatively detected in Type 1 and Type 2 AGN average spectra. E ~ 6.4 keV, EW ~ 100 eV. Type 1 AGN: No compelling evidence of a Broad component in the average spectrum. Continuum features best represented by a reflection component. Relativistic line upper limit EW<400 eV (3σ confidence). Iwasawa-Taniguchi effect for narrow line component marginally detected. Type 2 AGN: Statistics insufficient to distinguish between a relativistic line and a reflection component.

Conclusions Narrow emission line significatively detected in Type 1 and Type 2 AGN average spectra. E ~ 6.4 keV, EW ~ 100 eV. Type 1 AGN: No compelling evidence of a broad component in the average spectrum. Continuum features best represented by a reflection component. Relativistic line upper limit EW<400 eV (3σ confidence). Iwasawa-Taniguchi effect for narrow line component marginally detected. Type 2 AGN: Statistics insufficient to distinguish between a relativistic line and a reflection component.

Conclusions Narrow emission line significatively detected in Type 1 and Type 2 AGN average spectra. E ~ 6.4 keV, EW ~ 90 eV. Type 1 AGN: No compelling evidence of a broad component in the average spectrum. Continuum features best represented by a reflection component. Relativistic line upper limit EW<400 eV (3σ confidence). Iwasawa-Taniguchi effect for narrow line component marginally detected. Type 2 AGN: Statistics insufficient to distinguish between a relativistic line and a reflection component.

THANK YOU