3.2 Rolle’s Theorem and the Mean Value Theorem

Slides:



Advertisements
Similar presentations
We Calculus!!! 3.2 Rolle s Theorem and the Mean Value Theorem.
Advertisements

The Mean Value Theorem and Rolles Theorem Lesson 3.2 I wonder how mean this theorem really is?
Rolle’s Theorem and The Mean Value Theorem
The Mean Value Theorem Math 131 Spring Max-Min Theorem If f'(x) is defined on an open interval (a, b) and if f(x) has a relative extrema at a point.
THE DERIVATIVE AND THE TANGENT LINE PROBLEM
Rolle’s Theorem and the Mean Value Theorem3.2 Teddy Roosevelt National Park, North Dakota Greg Kelly, Hanford High School, Richland, WashingtonPhoto by.
Aim: Rolle’s Theorem Course: Calculus Do Now: Aim: What made Rolle over to his theorem? Find the absolute maximum and minimum values of y = x 3 – x on.
Miss Battaglia AP Calculus AB/BC.  Sketch a coordinate plane on a piece of paper. Label the points (1,3) and (5,3). Using a pencil, draw the graph of.
AP Calculus AB Chapter 3, Section 2 Rolle’s Theorem and the Mean Value Theorem
Rolle’s Theorem and the Mean Value Theorem. Rolle’s Theorem  Let f be continuous on the closed interval [a, b] and differentiable on the open interval.
Rolle’s and The Mean Value Theorem BC Calculus. Mean Value and Rolle’s Theorems The Mean-Value Theorem ( and its special case ) Rolle’s Theorem are Existence.
Sec. 3.2: Rolle’s Theorem and MVT Rolle’s Theorem: Let f be continuous on the closed interval [a, b] and differentiable on the open interval (a, b). If.
The Mean Value Theorem Lesson 4.2 I wonder how mean this theorem really is?
Section 3.2 – Rolle’s Theorem and the Mean Value Theorem
4.2 The Mean Value Theorem.
Rolle’s theorem and Mean Value Theorem ( Section 3.2) Alex Karassev.
Chapter 4: Applications of Derivatives Section 4.2: Mean Value Theorem
CHAPTER 3 SECTION 3.2 ROLLE’S THEOREM AND THE MEAN VALUE THEOREM
 Exploration:  Sketch a rectangular coordinate plane on a piece of paper.  Label the points (1, 3) and (5, 3).  Draw the graph of a differentiable.
Rolle’s and The Mean Value Theorem BC Calculus. Mean Value and Rolle’s Theorems The Mean-Value Theorem ( and its special case ) Rolle’s Theorem are Existence.
Calculus 1 Rolle’s Theroem And the Mean Value Theorem for Derivatives Mrs. Kessler 3.2.
A car accelerates from a stop to 45 m/sec in 4 sec. Explain why the car must have been accelerating at exactly m/sec at some moment. 2 Do Now.
Calculus Date: 12/10/13 Obj: SWBAT apply Rolle’s and the Mean Value Thm derivatives of absolute.
3.2 Rolle’s Theorem and the Mean Value Theorem. After this lesson, you should be able to: Understand and use Rolle’s Theorem Understand and use the Mean.
Section 4.2 Mean Value Theorem What you’ll learn Mean Value Theorem Physical Interpretation Increasing and Decreasing Functions Other Consequences Why?
Chapter Three: Section Two Rolle’s Theorem and the Mean Value Theorem.
4.2 Mean Value Theorem Objective SWBAT apply the Mean Value Theorem and find the intervals on which a function is increasing or decreasing.
Rollle’s and Mean Value Theorem French mathematician Michel Rolle (21 April 1652 – 8 November 1719)
2. Rolle’s Theorem and Mean Value Theorem
 On any continuous function between points a and b there exists some point(s) c where the tangent line at this point has the same slope as the secant.
Rolle’s Theorem/Mean-Value Theorem Objective: Use and interpret the Mean-Value Theorem.
If f (x) is continuous over [ a, b ] and differentiable in (a,b), then at some point, c, between a and b : Mean Value Theorem for Derivatives.
Calculus and Analytical Geometry Lecture # 15 MTH 104.
Section 3.2 Mean Value Theorem Math 1231: Single-Variable Calculus.
4.2A Rolle’s Theorem* Special case of Mean Value Theorem Example of existence theorem (guarantees the existence of some x = c but does not give value of.
4.2 The Mean Value Theorem.
I wonder how mean this theorem really is?
4.2 - The Mean Value Theorem
3.2 Rolle’s Theorem and the
Rolle’s theorem and Mean Value Theorem (Section 4.2)
Rolle’s Theorem/Mean-Value Theorem
3.2 Rolle’s Theorem and the Mean Value Theorem
4.2 The Mean Value Theorem State Standard
Rolle’s Theorem & the Mean Value Theorem (3.2)
Table of Contents 25. Section 4.3 Mean Value Theorem.
Mean Value and Rolle’s Theorem
Rolle’s Theorem Section 3.2.
Table of Contents 21. Section 4.3 Mean Value Theorem.
Mean Value Theorem for Derivatives
Rolle’s Theorem and the Mean Value Theorem
Rolle’s Theorem and the Mean Value Theorem
Sec 2 Cont: Mean Value Theorem (MVT)
Mean Value & Rolle’s Theorems
CHAPTER 3 SECTION 3.2 ROLLE’S THEOREM AND THE MEAN VALUE THEOREM
3.2 Rolle’s Theorem and the
AP Calculus BC September 23, 2016.
THE DERIVATIVE AND THE TANGENT LINE PROBLEM
ROLLES THEOREM AND THE EXTREME VALUE THEOREM
Section 3.2 Calculus AP/Dual, Revised ©2017
3.2 Rolle’s Theorem and the Mean Value Theorem
Lesson 2: Mean Value Theorem
Warmup 1. What is the interval [a, b] where Rolle’s Theorem is applicable? 2. What is/are the c-values? [-3, 3]
Rolle’s Theorem and the Mean Value Theorem
ROLLES THEOREM AND THE EXTREME VALUE THEOREM
Unit 5 : Day 6 Linear Approximations,
3.2: Rolle’s Theorem and the Mean Value Theorem
Section 3.2 Day 1 Mean Value Theorem
Mindjog Find the domain of each function..
Section 4.2 Mean Value Theorem.
Do Now: Find all extrema of
Presentation transcript:

3.2 Rolle’s Theorem and the Mean Value Theorem

Rolle’s Theorem Let f be continuous on the closed interval [a,b] and differentiable on the open interval (a,b). If f (a) = f (b) then there is at least on number c in (a, b) such that f ‘(c)=0

Example 1

Example 2

The Mean Value Theorem If f is continuous on the closed interval [a,b] and differentiable on the open interval (a,b), then there exists a number c in (a,b) such that

Some thoughts…. The MVT is most often used to prove other theorems It guarantees the existence of a tangent line which is parallel to the secant line through the points (a, f (a)) and (b, f (b)) i.e., there must exist a point c in (a, b) at which the instantaneous rate of change is equal to the average rate of change over the interval [a,b]

Example 3

Example 4 Two stationary patrol cars equipped with radar are 5 mi apart on a highway. As a truck passes the first patrol car, its speed is clocked at 55 mph. Four minutes later, the second patrol car clocks the truck at 50 mph. Prove that the truck must have exceeded the speed limit of 55 mph at some point during that 4 minutes.