Using an Observations Data Model in Hydrologic Information Systems

Slides:



Advertisements
Similar presentations
CUAHSI Observations Data Model A relational database stored in Access, PostgreSQL, SQLServer, …. Stores observation data made at points Access data through.
Advertisements

HydroServer A Platform for Publishing Space- Time Hydrologic Datasets Support EAR CUAHSI HIS Sharing hydrologic data Jeffery.
How to share and publish your data using HIS David G Tarboton Jeff Horsburgh Ilya Zaslavsky Tom Whitenack David Valentine Support EAR
The CUAHSI Hydrologic Information System Support EAR CUAHSI HIS Sharing hydrologic data
Sharing Hydrologic Data with the CUAHSI Hydrologic Information System Support EAR CUAHSI HIS Sharing hydrologic data David.
This work is funded by the Inland Northwest Research Alliance INRA Constellation of Experimental Watersheds: Cyberinfrastructure to Support Publication.
ICEWATER: INRA Constellation of Experimental Watersheds Cyberinfrastructure to Support Publication of Water Resources Data Jeffery S. Horsburgh, Utah State.
A Community Data Model for Hydrologic Observations Observations Data Model Schema ODM Data Source and Network SitesVariables ValuesMetadata Depth of snow.
Project Venue Little Bear River –Cache County, UT –5-20 km from Utah State University –Existing cyberinfra-structure from ongoing projects with EPA/USDA/USU/
Linking HIS and GIS How to support the objective, transparent and robust calculation and publication of SWSI? Jeffery S. Horsburgh CUAHSI HIS Sharing hydrologic.
This work is funded by National Science Foundation Grant EAR Accessing and Sharing Data Using the CUAHSI Hydrologic Information System CUAHSI HIS.
CUAHSI HIS Data Services Project David R. Maidment Director, Center for Research in Water Resources University of Texas at Austin (HIS Project Leader)
SENSORS, CYBERINFRASTRUCTURE, AND EXAMINATION OF HYDROLOGIC AND HYDROCHEMICAL RESPONSE IN THE LITTLE BEAR RIVER OBSERVATORY TEST BED Jeffery S. Horsburgh.
Components of an Integrated Environmental Observatory Information System Cyberinfrastructure to Support Publication of Water Resources Data Jeffery S.
This work was funded by the U.S. National Science Foundation under grant EAR Any opinions, findings and conclusions or recommendations expressed.
The HydroServer Platform for Sharing Hydrologic Data Support EAR CUAHSI HIS Sharing hydrologic data David G Tarboton, Jeffery.
HydroServer A Platform for Publishing Space- Time Hydrologic Datasets Support EAR CUAHSI HIS Sharing hydrologic data Jeffery.
Testing A Community Data Model for Hydrologic Observations David G Tarboton Jeff Horsburgh David R. Maidment Ilya Zaslavsky David Valentine Blair Jennings.
Sharing and publishing data using CUAHSI HIS Outline HIS data publication system WaterML and WaterOneFlow web services Observations data model (ODM) Data.
Development of a Community Hydrologic Information System Jeffery S. Horsburgh Utah State University David G. Tarboton Utah State University.
Using GIS in Creating an End-to- End System for Publishing Environmental Observations Data Jeffery S. Horsburgh David G. Tarboton, David R. Maidment, Ilya.
Integrating Historical and Realtime Monitoring Data into an Internet Based Watershed Information System for the Bear River Basin Jeff Horsburgh David Stevens,
Deployment and Evaluation of an Observations Data Model Jeffery S Horsburgh David G Tarboton Ilya Zaslavsky David R. Maidment David Valentine
HIS Team and Collaborators University of Texas at Austin – David Maidment, Tim Whiteaker, Ernest To, Bryan Enslein, Kate Marney San Diego Supercomputer.
An End-to-End System for Publishing Environmental Observations Data Jeffery S. Horsburgh David K. Stevens, David G. Tarboton, Nancy O. Mesner, Amber Spackman.
A Services Oriented Architecture for Water Resources Data David R. Maidment Center for Research in Water Resources University of Texas at Austin EPA Storet.
Tools for Publishing Environmental Observations on the Internet Justin Berger, Undergraduate Researcher Jeff Horsburgh, Faculty Mentor David Tarboton,
Using HydroServer Organize, Manage, and Publish Your Data Support EAR CUAHSI HIS Sharing hydrologic data Jeffery S. Horsburgh.
About CUAHSI The Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) is an organization representing 120+ universities.
Ocean Sciences What is CUAHSI? CUAHSI – Consortium of Universities for the Advancement of Hydrologic Science, Inc Formed in 2001 as a legal entity Program.
Information Requirements for Integrating Spatially Discrete, Feature- Based Earth Observations Jeffery S. Horsburgh Anthony Aufdenkampe, Kerstin Lehnert,
About CUAHSI The Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) is an organization representing 120+ universities.
Exercises: Organizing, Loading, and Managing Point Observations Using HydroServer Support EAR CUAHSI HIS Sharing hydrologic data
Data Interoperability in the Hydrologic Sciences The CUAHSI Hydrologic Information System David Tarboton, David Maidment, Ilya Zaslavsky, Dan Ames, Jon.
Advancing an Information Model for Environmental Observations Jeffery S. Horsburgh Anthony Aufdenkampe, Richard P. Hooper, Kerstin Lehnert, Kim Schreuders,
Sharing Data Using the CUAHSI Hydrologic Information System David Tarboton Utah State University Support EAR CUAHSI HIS Sharing hydrologic data.
CUAHSI, WATERS and HIS by Richard P. Hooper, David G. Tarboton and David R. Maidment.
GIS in Water Resources: Lecture 1 In-class and distance learning Geospatial database of hydrologic features GIS and HIS Curved earth and a flat map.
Overview of CUAHSI HIS Version 1.1 David R. Maidment Director, Center for Research in Water Resources University of Texas at Austin CUAHSI Biennial Science.
The CUAHSI Community Hydrologic Information System Jeffery S. Horsburgh Utah Water Research Laboratory Utah State University CUAHSI HIS Sharing hydrologic.
Bringing Water Data Together David R. Maidment Center for Research in Water Resources University of Texas at Austin Texas Water Summit San Antonio Tx,
GIS in Water Resources: Lecture 1 In-class and distance learning Geospatial database of hydrologic features GIS and HIS Curved earth and a flat map.
CUAHSI HIS Features of Observations Data Model. NWIS ArcGIS Excel NCAR Trends NAWQA Storet NCDC Ameriflux Matlab AccessSAS Fortran Visual Basic C/C++
Lecture 4 Data Models Jeffery S. Horsburgh Hydroinformatics Fall 2012 This work was funded by National Science Foundation Grant EPS
The CUAHSI Observations Data Model Jeff Horsburgh David Maidment, David Tarboton, Ilya Zaslavsky, Michael Piasecki, Jon Goodall, David Valentine,
Services-Oriented Architecture for Water Data David R. Maidment Fall 2009.
The Bear River Watershed Information System Jeffery S. Horsburgh Utah Water Research Laboratory Utah State University David.
Developing a community hydrologic information system David G Tarboton David R. Maidment (PI) Ilya Zaslavsky Michael Piasecki Jon Goodall
The CUAHSI Hydrologic Information System Spatial Data Publication Platform David Tarboton, Jeff Horsburgh, David Maidment, Dan Ames, Jon Goodall, Richard.
Hydroinformatics Lecture: HydroServer .NET/PHP
Developing a Community Hydrologic Information System
Using GIS in Creating an End-to-End System for Publishing Environmental Observations Data Jeffery S. Horsburgh David G. Tarboton, David R. Maidment, Ilya.
The CUAHSI Community Hydrologic Information System
The CUAHSI Community Hydrologic Information System
Developing a Community Hydrologic Information System
Sharing Hydrologic Data with the CUAHSI* Hydrologic Information System
The CUAHSI Hydrologic Information System and NHD Plus A Services Oriented Architecture for Water Resources Data David G Tarboton David R. Maidment (PI)
A Community Data Model for Hydrologic Information Systems
The CUAHSI Hydrologic Information System Service Oriented Architecture for Water Resources CUAHSI HIS Sharing hydrologic data Support.
Lecture 8 Database Implementation
CUAHSI HIS Sharing hydrologic data
Hydroinformatics Lecture 15: HydroServer (and HydroServer Lite)
Jeffery S. Horsburgh Hydroinformatics Fall 2014
Services-Oriented Architecture for Water Data
Department of Civil, Architectural & Environmental Engineering
CUAHSI-Hydrologic Information Systems
Sharing and publishing data using CUAHSI HIS
GIS in Water Resources: Lecture 1
Space, Time and Variables in Hydrology
Hydrologic Information Systems to discover and combine data from multiple sources for hydrologic analysis David Tarboton Utah State University CUAHSI HIS.
Presentation transcript:

Using an Observations Data Model in Hydrologic Information Systems David G Tarboton Jeffery S Horsburgh David R. Maidment Ilya Zaslavsky Support EAR 0622374 http://www.cuahsi.org/his.html

CUAHSI Hydrologic Information System Goal: Enhance hydrologic science by facilitating user access to more and better data for testing hypotheses and analyzing processes Databases Analysis Models Advancement of water science is critically dependent on integration of water information It is as important to represent hydrologic environments precisely with data as it is to represent hydrologic processes with equations Water quantity and quality Rainfall & Snow Meteorology Soil water Remote sensing

Why an Observations Data Model Syntactic heterogeneity (File types and formats) Semantic heterogeneity Language for observation attributes (structural) Language to encode observation attribute values (contextual) Publishing and sharing research data Metadata to facilitate unambiguous interpretation Enhance analysis capability

What are the basic attributes to be associated with each single data value and how can these best be organized? Value DateTime Variable Location Units Interval (support) Accuracy Offset OffsetType/ Reference Point Source/Organization Censoring Data Qualifying Comments Method Quality Control Level Sample Medium Value Type Data Type

Point Observations Information Model Utah State Univ Data Source Little Bear River Network GetSites GetSiteInfo Little Bear River at Mendon Rd Sites GetVariables Dissolved Oxygen Variables GetVariableInfo GetValues 9.78 mg/L, 1 October 2007, 6PM Values {Value, Time, Qualifier, Offset} A data source operates an observation network A network is a set of observation sites A site is a point location where one or more variables are measured A variable is a property describing the flow or quality of water A value is an observation of a variable at a particular time A qualifier is a symbol that provides additional information about the value An offset allows specification of measurements at various depths in water Horsburgh, J. S., D. G. Tarboton, D. R. Maidment and I. Zaslavsky, (2008), "A Relational Model for Environmental and Water Resources Data," Water Resources Research (in press).

CUAHSI Observations Data Model A relational database at the single observation level (atomic model) Stores observation data made at points Metadata for unambiguous interpretation Traceable heritage from raw measurements to usable information Standard format for data sharing Cross dimension retrieval and analysis Streamflow Flux tower data Precipitation & Climate Groundwater levels Water Quality Soil moisture Variables Space Time

CUAHSI Observations Data Model http://www.cuahsi.org/his/odm.html

Site Attributes SiteCode, e.g. NWIS:10109000 SiteName, e.g. Logan River Near Logan, UT Latitude, Longitude Geographic coordinates of site LatLongDatum Spatial reference system of latitude and longitude Elevation_m Elevation of the site VerticalDatum Datum of the site elevation Local X, Local Y Local coordinates of site LocalProjection Spatial reference system of local coordinates PosAccuracy_m Positional Accuracy State, e.g. Utah County, e.g. Cache

Observations Data Model Independent of, but can be coupled to Geographic Representation ODM Arc Hydro Feature Waterbody HydroID HydroCode FType Name AreaSqKm JunctionID HydroPoint Watershed DrainID NextDownID ComplexEdgeFeature EdgeType Flowline Shoreline HydroEdge ReachCode LengthKm LengthDown FlowDir Enabled SimpleJunctionFeature 1 HydroJunction DrainArea AncillaryRole * HydroNetwork Observations Data Model Sites 1 1 SiteID SiteCode SiteName OR Latitude Longitude … CouplingTable 1 SiteID HydroID 1

Variable attributes Flow m3/s VariableName, e.g. discharge Cubic meters per second Flow m3/s VariableName, e.g. discharge VariableCode, e.g. NWIS:0060 SampleMedium, e.g. water ValueType, e.g. field observation, laboratory sample IsRegular, e.g. Yes for regular or No for intermittent TimeSupport (averaging interval for observation) DataType, e.g. Continuous, Instantaneous, Categorical GeneralCategory, e.g. Climate, Water Quality NoDataValue, e.g. -9999

Discharge, Stage, Concentration and Daily Average Example

Stage and Streamflow Example Discharge Derived from Gage Height Concepts: Data derived from other data – single data point derived from a single observation (discharge from stage) Data derived using a specific method (discharge from stage using rating curve) Relationships: Relationships between Values table and DerivedFrom table on DerivedFromID and ValueID Relationship between Values table and Variables table on VariableID Relationship between Values table and Methods table on MethodID Relationship between Variables table and Units table on UnitID

Offset OffsetValue Distance from a datum or control point at which an observation was made OffsetType defines the type of offset, e.g. distance below water level, distance above ground surface, or distance from bank of river

Water Chemistry from a profile in a lake Water Chemistry From a Lake Profile Concepts: Grouped observations (all observations in one reservoir profile) Observations made using an offset (observations made at multiple depths below the surface of a reservoir) Observations made using a specific method (observations made using a particular field instrument) Relationships: Relationship between Values table and the Variables table on VariableID Relationship between Values table and OffestTypes table on OffsetTypeID Relationship between Values table and Methods table on MethodID Relationship between Variables table and Units table on UnitID Relationship between GroupDescriptions table and Groups table on GroupID Relationship between OffsetTypes table and Units table on UnitID and OffsetUnitID

Implementation in WATERS Network Information System National Hydrologic Information Server San Diego Supercomputer Center 11 WATERS Network test bed projects 16 ODM instances (some test beds have more than one ODM instance) Data from 1246 sites, of these, 167 sites are operated by WATERS investigators

Utah – Little Bear River and Mud Lake Turbidity Continuous turbidity observations at the Little Bear River at Mendon Road from two different turbidity sensors.

Florida – Santa Fe Watershed Nitrate Nitrogen (mg/L) Millpond Spring PI: Wendy Graham, ….; DM: Kathleen McKee, Mark Newman

Loading data into ODM Interactive OD Data Loader (OD Loader) Loads data from spreadsheets and comma separated tables in simple format Scheduled Data Loader (SDL) Loads data from datalogger files on a prescribed schedule. Interactive configuration SQL Server Integration Services (SSIS) Microsoft application accompanying SQL Server useful for programming complex loading or data management functions SDL SSIS

Managing Data Within ODM - ODM Tools Query and export – export data series and metadata Visualize – plot and summarize data series Edit – delete, modify, adjust, interpolate, average, etc.

Dynamic controlled vocabulary moderation system ODM Data Manager ODM Website ODM Tools ODM Controlled Vocabulary Moderator XML Master ODM Controlled Vocabulary Local ODM Database ODM Controlled Vocabulary Web Services Local Server http://water.usu.edu/cuahsi/odm/cv.aspx

Summary Syntactic consistency (File types and formats) Semantic consistency Language for observation attributes (structural) Language to encode observation attribute values (contextual) A national network of consistent data Enhanced data availability Metadata to facilitate unambiguous interpretation Enhanced analysis capability

Future Considerations Additional data types (grid, image etc.) Additional catalog sets to enhance discovery Unit standardization and conversion Ownership, security, authentication, provenance Improve controlled vocabulary constraints to enhance integrity

HIS Website http://www.cuahsi.org/his Project Team – Introduces members of the HIS Team Data Access System for Hydrology – Web map interface supporting data discovery and retrieval Prototype Web Services – WaterOneFlow web services facilitating downlad of time series data from numerous national repositories of hydrologic data Observations Data Model – Relational database schema for hydrologic observations HIS Tools – Links to end-user applications developed to support HIS Documentation and Reports – Status reports, specifications, workbooks and links related to HIS Feedback – Let us know what you think Austin Workshop – Material from WATERS workshop in Austin