課程大綱 OUTLINE Functions of Several Variables

Slides:



Advertisements
Similar presentations
Engineering Mathematics: Differential Calculus. Contents Concepts of Limits and Continuity Derivatives of functions Differentiation rules and Higher Derivatives.
Advertisements

第十八單元 平面上之參數方程式. Parametric Equations A plane curve is determined by a pair of parametric equations t, Called the parameter, as measuring time.
03/19/2003 Week #4 江支弘 Chapter 4 Making Predictions: Regression Analysis.
Chapter 13 Functions of Several Variables. Copyright © Houghton Mifflin Company. All rights reserved.13-2 Definition of a Function of Two Variables.
The gradient as a normal vector. Consider z=f(x,y) and let F(x,y,z) = f(x,y)-z Let P=(x 0,y 0,z 0 ) be a point on the surface of F(x,y,z) Let C be any.
ESSENTIAL CALCULUS CH11 Partial derivatives
MA Day 24- February 8, 2013 Section 11.3: Clairaut’s Theorem Section 11.4: Differentiability of f(x,y,z) Section 11.5: The Chain Rule.
DIFFERENTIATION & INTEGRATION CHAPTER 4.  Differentiation is the process of finding the derivative of a function.  Derivative of INTRODUCTION TO DIFFERENTIATION.
Semester 1 Review Unit vector =. A line that contains the point P(x 0,y 0,z 0 ) and direction vector : parametric symmetric.
International Journal of Computer Vision, MICHAEL KASS, ANDREW WITKIN, and DEMETRI TERZOPOULOS Snakes: Active Contour Models.
尖端材料實驗室 指導教授 : 廖義田 博士 研 究 生 : 潘保同,許方駿 李孟峰,黃慈偉.
1 Simple Regression ( 簡單迴歸分析 ) Social Research Methods 2109 & 6507 Spring, 2006 March 8, 9, 13, 2006.
Review of Chapter 3 - 已學過的 rules( 回顧 )- 朝陽科技大學 資訊管理系 李麗華 教授.
STAT0_corr1 二變數的相關性  變數之間的關係是統計研究上的一大目標  討論二分類變數的相關性,以列聯表來表示  討論二連續隨機變數時,可以作 x-y 散佈圖觀察它 們的關係強度  以相關係數來代表二者關係的強度.
Quantitative Data Analysis Social Research Methods 2109 & 6507 Spring, 2006 March
Section 2.2 Correlation 相關係數. 散佈圖 1 散佈圖 2 散佈圖的盲點 兩座標軸的刻度不同,散佈圖的外觀呈 現的相聯性強度,會有不同的感受。 散佈圖 2 相聯性看起來比散佈圖 1 來得強。 以統計數字相關係數做為客觀標準。
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.
1 第四章 多變數函數的微分學 § 4.1 偏導數定義 定義 極限值 ■. 2 定理 極限值的基本定理 (1) 極限值的唯一性 : 若 存在,則 其值必為唯一。 (2) 若 且 ( 與 為常數 ) , 則 且 為常數且.
第二章 供給與需求 中興大學會計學系 授課老師:簡立賢.
1 Introduction to Chemical Engineering Thermodynamics Chapter 2 The first law and other basic concepts Smith.
© 2010 Pearson Education, Inc. All rights reserved.
Chap 3 Linear Differential Equations
Fugacity Coefficient and Fugacity
The application of boundary element evaluation on a silencer in the presence of a linear temperature gradient Boundary Element Method 期末報告 指導老師:陳正宗終身特聘教授.
第七章 連續機率分配.
中華大學九十三學年度第一學期 工程數學 ( 三 ) 網路輔助教學教材 製作人:土木系呂志宗副教授
Chapter 3 Entropy : An Additional Balance Equation
1 ARMA model Let ε t be white noise process, Z t be a stationary series. white noise : 純雜訊 ε t ~ NID( 0, σ 2 ) ARMA model 又稱為 Box-Jankin model , 1970 年代推出,
1 Introduction to Chemical Engineering Thermodynamics Ji-Sheng Chang Chapter 10-1 The concepts and laws for binary vapor-liquid equilibrium problems.
&5 二因子實驗設計 二因子無交互作用 &Four DOE Class_90a.
Optimization And Differential Equations 最佳化與微分方程 Peng-Jen Lai ( 賴鵬仁 ) Department of Mathematics National Kaohsiung Normal University ( 高雄師範大學數學系 ) ( 高雄師範大學數學系.
-Derivative (導函數) - Chapter 3 朝陽科技大學 資訊管理系 李麗華 教授.
Chapter 6 Probability & The Normal Distribution
連續隨機變數 連續變數:時間、分數、重量、……
Inference for Simple Regression Social Research Methods 2109 & 6507 Spring 2006 March 15, 16, 2006.
醫管統計 1 導數的定義 : 極限與連續  割線 secant line 斜率的定義  切線 tangent line.
Implicit Differentiation. Objectives Students will be able to Calculate derivative of function defined implicitly. Determine the slope of the tangent.
第五章IIR數位濾波器設計 濾波器的功能乃對於數位信號進行處理﹐ 以滿足系統的需求規格。其作法為設計一 個系統的轉移函數﹐或者差分方程式﹐使 其頻率響應落在規格的範圍內。本章探討 的是其中一種方法﹐稱為Infinite impulse register(IIR)。 IIR架構說明。 各種不同頻帶(Band)濾波器的設計方法。
Regression 相關 –Cross table –Bivariate –Contingency Cofficient –Rank Correlation 簡單迴歸 多元迴歸.
第二章 導 數 課程目標 變化率與切線 導數的定義 基本的微分方法 邊際分析 乘法與除法規則 連鎖律 高階導數 不可微的函數.
9.8 Solution of Differential Equations by Means of Taylor Series.
Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung Chapter 1 First-Order Differential Equations A differential.
(MTH 250) Lecture 24 Calculus. Previous Lecture’s Summary Multivariable functions Limits along smooth curves Limits of multivariable functions Continuity.
Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung Chapter 8 向量分析 (Vector Analysis) 物理量與符號 物理量 : 1. 純量 (scalar.
Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 12 Functions of Several Variables.
1 Consider a system of linear equations.  The variables, or unknowns, are referred to as x 1, x 2, …, x n while the a ij ’s and b j ’s are constants.
Implicit Differentiation
MA Day 25- February 11, 2013 Review of last week’s material Section 11.5: The Chain Rule Section 11.6: The Directional Derivative.
Implicit Differentiation 3.6. Implicit Differentiation So far, all the equations and functions we looked at were all stated explicitly in terms of one.
1 1 Slide The Simple Linear Regression Model n Simple Linear Regression Model y =  0 +  1 x +  n Simple Linear Regression Equation E( y ) =  0 + 
Sec 15.6 Directional Derivatives and the Gradient Vector
Section 15.6 Directional Derivatives and the Gradient Vector.
1 CH 11 PARAMETRIC EQUATIONS AND POLAR COORDINATES 參數方程式與極座標.
Section 15.3 Partial Derivatives. PARTIAL DERIVATIVES If f is a function of two variables, its partial derivatives are the functions f x and f y defined.
The Chain Rule. The Chain Rule Case I z x y t t start with z z is a function of x and y x and y are functions of t Put the appropriate derivatives along.
MA Day 34- February 22, 2013 Review for test #2 Chapter 11: Differential Multivariable Calculus.
Copyright Kaplan AEC Education, 2008 Calculus and Differential Equations Outline Overview DIFFERENTIAL CALCULUS, p. 45 Definition of a Function Definition.
電腦視覺期末報告 Gradients 指導教授:張顧耀學生姓名:廖寶呈 學號: E
Chapter 3 Derivatives.
Chapter 14 Partial Derivatives
Functions of Several Variables
Chapter 14 Partial Derivatives.
Implicit Differentiation
Chain Rules for Functions of Several Variables
常微分方程作業 Ch 應數大二 洪美玲
Implicit Differentiation
How do we find the best linear regression line?
Find the directional derivative of the function at the given point in the direction of the vector v. {image}
MAT 3238 Vector Calculus 15.4 Tangent Planes.
Presentation transcript:

課程大綱 OUTLINE Functions of Several Variables Limits and Continuity(極限與連續) Partial Derivatives(偏導數) Linear Approximations and chain Rule (線性估計與鏈鎖律) Directional Derivatives and The Gradient Vector(方向導數和梯度) Maximum and Minimum Values(極值)

Functions of Several Variables -R3

Functions of Several Variables -R3

Functions of Several Variables -Rn

Functions of Several Variables -Rn

Functions of Several Variables -Rn

Functions of Several Variables -Rn

Functions of Several Variables -Rn 長度及相關的等式

Functions of Several Variables

Functions of Several Variables - FUNCTIONS OF 2 VARIABLES

Functions of Several Variables - FUNCTIONS OF 2 VARIABLES

Functions of Several Variables - FUNCTIONS OF 2 VARIABLES

Functions of Several Variables - FUNCTIONS OF 2 VARIABLES

Functions of Several Variables - LEVEL CURVES 等值線

Functions of Several Variables - LEVEL CURVES 等值線

Functions of Several Variables - LEVEL CURVES 等值線      

Functions of Several Variables - LEVEL CURVES 等值線      

LIMITS AND CONTINUITY 極限與連續 - LIMIT      

LIMITS AND CONTINUITY 極限與連續 - LIMIT      

LIMITS AND CONTINUITY 極限與連續 - LIMIT      

LIMITS AND CONTINUITY 極限與連續 - LIMIT      

LIMITS AND CONTINUITY 極限與連續 - LIMIT      

LIMITS AND CONTINUITY 極限與連續 - THEOREM      

LIMITS AND CONTINUITY 極限與連續 - THEOREM      

LIMITS AND CONTINUITY 極限與連續 - CONTINUITY連 續      

LIMITS AND CONTINUITY 極限與連續 - CONTINUITY連 續      

LIMITS AND CONTINUITY 極限與連續 - CONTINUITY連 續      

LIMITS AND CONTINUITY 極限與連續 - CONTINUITY連 續      

LIMITS AND CONTINUITY 極限與連續 - CONTINUITY連 續      

LIMITS AND CONTINUITY 極限與連續 - CONTINUITY連 續      

PARTIAL DERIVATIVES偏導數 - PARTIAL DERIVATIVES      

PARTIAL DERIVATIVES偏導數 - PARTIAL DERIVATIVES      

PARTIAL DERIVATIVES偏導數 - PARTIAL DERIVATIVES      

PARTIAL DERIVATIVES偏導數 - PARTIAL DERIVATIVES      

PARTIAL DERIVATIVES偏導數 - PARTIAL DERIVATIVES      

PARTIAL DERIVATIVES偏導數 - PARTIAL DERIVATIVES      

PARTIAL DERIVATIVES偏導數 - PARTIAL DERIVATIVES      

PARTIAL DERIVATIVES偏導數 - INTERPRETATIONS OF PARTIAL DERIVATIVES      

PARTIAL DERIVATIVES偏導數 - INTERPRETATIONS OF PARTIAL DERIVATIVES      

PARTIAL DERIVATIVES偏導數 - HIGHER DERIVATIVES高階偏導數      

PARTIAL DERIVATIVES偏導數 - HIGHER DERIVATIVES高階偏導數      

PARTIAL DERIVATIVES偏導數 - HIGHER DERIVATIVES高階偏導數      

PARTIAL DERIVATIVES偏導數 - HIGHER DERIVATIVES高階偏導數      

PARTIAL DERIVATIVES偏導數 - HIGHER DERIVATIVES高階偏導數      

PARTIAL DERIVATIVES偏導數 - PARTIAL DIFFERENTIAL EQUATIONS      

PARTIAL DERIVATIVES偏導數 - PARTIAL DIFFERENTIAL EQUATIONS      

PARTIAL DERIVATIVES偏導數 - PARTIAL DIFFERENTIAL EQUATIONS      

LINEAR APPROXIMATIONS AND CHAIN RULE - TANGENT PLANES 切平面      

LINEAR APPROXIMATIONS AND CHAIN RULE - TANGENT PLANES 切平面      

LINEAR APPROXIMATIONS AND CHAIN RULE - TANGENT PLANES 切平面      

LINEAR APPROXIMATIONS AND CHAIN RULE - LINEAR APPROXIMATION 線性估計      

LINEAR APPROXIMATIONS AND CHAIN RULE - LINEAR APPROXIMATION 線性估計      

LINEAR APPROXIMATIONS AND CHAIN RULE - LINEAR APPROXIMATION 線性估計      

LINEAR APPROXIMATIONS AND CHAIN RULE - LINEAR APPROXIMATION 線性估計      

LINEAR APPROXIMATIONS AND CHAIN RULE - LINEAR APPROXIMATION 線性估計      

LINEAR APPROXIMATIONS AND CHAIN RULE - LINEAR APPROXIMATION 線性估計      

LINEAR APPROXIMATIONS AND CHAIN RULE - LINEAR APPROXIMATION 線性估計      

LINEAR APPROXIMATIONS AND CHAIN RULE - LINEAR APPROXIMATION 線性估計      

LINEAR APPROXIMATIONS AND CHAIN RULE - LINEAR APPROXIMATION 線性估計      

LINEAR APPROXIMATIONS AND CHAIN RULE - LINEAR APPROXIMATION 線性估計      

LINEAR APPROXIMATIONS AND CHAIN RULE - LINEAR APPROXIMATION 線性估計      

LINEAR APPROXIMATIONS AND CHAIN RULE - THE CHAIN RULE 鏈鎖律(CASE 1)      

LINEAR APPROXIMATIONS AND CHAIN RULE - THE CHAIN RULE 鏈鎖律(CASE 1)      

LINEAR APPROXIMATIONS AND CHAIN RULE - THE CHAIN RULE 鏈鎖律(CASE 1)      

LINEAR APPROXIMATIONS AND CHAIN RULE - THE CHAIN RULE 鏈鎖律(CASE 1)      

LINEAR APPROXIMATIONS AND CHAIN RULE - THE CHAIN RULE 鏈鎖律(CASE 2)      

LINEAR APPROXIMATIONS AND CHAIN RULE - THE CHAIN RULE 鏈鎖律(CASE 2)      

LINEAR APPROXIMATIONS AND CHAIN RULE - THE CHAIN RULE 鏈鎖律(CASE 2)      

LINEAR APPROXIMATIONS AND CHAIN RULE - THE CHAIN RULE 鏈鎖律(CASE 2)      

LINEAR APPROXIMATIONS AND CHAIN RULE - THE CHAIN RULE 鏈鎖律(CASE 2)      

LINEAR APPROXIMATIONS AND CHAIN RULE - IMPLICIT DIFFERENTIATION 隱微分      

LINEAR APPROXIMATIONS AND CHAIN RULE - IMPLICIT DIFFERENTIATION 隱微分      

LINEAR APPROXIMATIONS AND CHAIN RULE - IMPLICIT DIFFERENTIATION 隱微分      

LINEAR APPROXIMATIONS AND CHAIN RULE - IMPLICIT DIFFERENTIATION 隱微分      

LINEAR APPROXIMATIONS AND CHAIN RULE - IMPLICIT DIFFERENTIATION 隱微分      

LINEAR APPROXIMATIONS AND CHAIN RULE - IMPLICIT DIFFERENTIATION 隱微分      

LINEAR APPROXIMATIONS AND CHAIN RULE - IMPLICIT DIFFERENTIATION 隱微分      

LINEAR APPROXIMATIONS AND CHAIN RULE - IMPLICIT DIFFERENTIATION 隱微分      

LINEAR APPROXIMATIONS AND CHAIN RULE - IMPLICIT DIFFERENTIATION 隱微分      

DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR - DIRECTIONAL DERIVATIVES 方向導數      

DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR - DIRECTIONAL DERIVATIVES 方向導數      

DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR - DIRECTIONAL DERIVATIVES 方向導數      

DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR - DIRECTIONAL DERIVATIVES 方向導數      

DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR - THE GRADIENT VECTOR 二變數函數的梯度      

DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR - THE GRADIENT VECTOR 二變數函數的梯度      

DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR - THE GRADIENT VECTOR 二變數函數的梯度      

DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR - THE GRADIENT VECTOR 二變數函數的梯度      

DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR - THE GRADIENT VECTOR 二變數函數的梯度      

DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR - THE GRADIENT VECTOR 二變數函數的梯度      

DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR - THE GRADIENT VECTOR 二變數函數的梯度      

DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR - THE GRADIENT VECTOR 二變數函數的梯度      

DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR - FUNCTIONS OF THREE VARIABLES      

DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR - FUNCTIONS OF THREE VARIABLES      

DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR - FUNCTIONS OF THREE VARIABLES      

DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR - FUNCTIONS OF THREE VARIABLES      

DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR - FUNCTIONS OF THREE VARIABLES      

DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR - FUNCTIONS OF THREE VARIABLES      

DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR - TANGENT PLANES TO LEVEL SURFACES      

DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR - TANGENT PLANES TO LEVEL SURFACES      

DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR - TANGENT PLANES TO LEVEL SURFACES      

MAXIMUM AND MINIMUM VALUES - LOCAL MAXIMUM AND LOCAL MINIMUM VALUES      

MAXIMUM AND MINIMUM VALUES - LOCAL MAXIMUM AND LOCAL MINIMUM VALUES      

MAXIMUM AND MINIMUM VALUES - LOCAL MAXIMUM AND LOCAL MINIMUM VALUES      

MAXIMUM AND MINIMUM VALUES - CRITICAL POINT AND SADDLE POINT      

MAXIMUM AND MINIMUM VALUES - CRITICAL POINT AND SADDLE POINT      

MAXIMUM AND MINIMUM VALUES - CRITICAL POINT AND SADDLE POINT      

MAXIMUM AND MINIMUM VALUES - CRITICAL POINT AND SADDLE POINT      

MAXIMUM AND MINIMUM VALUES - CRITICAL POINT AND SADDLE POINT      

MAXIMUM AND MINIMUM VALUES - CRITICAL POINT AND SADDLE POINT      

MAXIMUM AND MINIMUM VALUES - CRITICAL POINT AND SADDLE POINT      

MAXIMUM AND MINIMUM VALUES - CRITICAL POINT AND SADDLE POINT      

MAXIMUM AND MINIMUM VALUES - LAGRANGE MULTIPLIERS      

MAXIMUM AND MINIMUM VALUES - LAGRANGE MULTIPLIERS      

MAXIMUM AND MINIMUM VALUES - LAGRANGE MULTIPLIERS      

MAXIMUM AND MINIMUM VALUES - LAGRANGE MULTIPLIERS      

MAXIMUM AND MINIMUM VALUES - LAGRANGE MULTIPLIERS      

MAXIMUM AND MINIMUM VALUES - LAGRANGE MULTIPLIERS