Levon Kazaryan, Gregory Kantorovich Higher School of Economics

Slides:



Advertisements
Similar presentations
1 By LIM Chong Yah Albert Winsemius Chair Professor of Economics Director, Economic Growth Centre School of Humanities and Social Sciences Nanyang Technological.
Advertisements

by the way we 1.Introduction: Cultural Norms and Values - Stereotyping American culture Chinese culture.
DYNAMIC CONDITIONAL CORRELATION MODELS OF TAIL DEPENDENCE Robert Engle NYU Stern DEPENDENCE MODELING FOR CREDIT PORTFOLIOS Venice 2003.
Users and Uses of IPUMS International Data Presented by Dr. Miriam King.
1 Chapter 4. 2 Market Indices for USA and Latin America, Market Indices for USA and Latin America,
SEASONALITY in the Vietnam Stock Index
Hunter centre for strathclyde Global Entrepreneurship Monitor Scotland 2002 Jonathan Levie Wendy Brown Laura Galloway.
© Lloyd’s Regional Watch Content Guide CLICK ANY BOX AMERICAS IMEA EUROPE ASIA PACIFIC.
Investing in the UAE CH 10. Investing in the UAE Introduction Why Investing in Global Markets? 1. Additional investment opportunities 2. Growth potential.
Poverty & Human Capability 101 Introductory Class.
Ewa Lukasik - Jakub Lawik - Juan Mojica - Xiaodong Xu.
The University of Hong Kong Short-Sales Constraints and Price Discovery: Evidence from the Hong Kong Market Eric C. CHANG and Yinghui YU The University.
1 Does More International Trade Results in Highly Correlated Business Cycle ? Presenter: Tao Xing Supervisors: Dr. A. Abbott & Dr. J. Easaw Third year.
Marine & Energy Practice Risk and Insurance Seminar Houston 20 September 2004 John Lapsley Chairman Marine & Energy.
The Global Economic Environment The Coming Boom Wealthy Industrial Countries Developing Countries East Asia South Asia Latin America
Ephraim CLARK, CONSTRUCTING AND TESTING THE “WORLD MARKET PORTFOLIO” FOR DOLLAR BASED INVESTORS Ephraim.
1 Predicting peaks and troughs in real house prices: a probit approach LIME Workshop Brussels, 8 December 2011 Paul van den Noord.
Global Impact Awards Argentina Australia Austria Belgium Brazil Canada China France Germany Greece Hungary India Indonesia Israel Italy Japan Korea Malaysia.
1 Revisions analysis of OECD composite leading indicators (CLI) Emmanuelle Guidetti Third Joint European Commission OECD Workshop on Business and Consumer.
Currency Unification: Foreign Exchange Volatility and Equity Returns A study of the European Union and the effects of the Euro.
Market Efficiency.
The United States The Economy. What is GDP ? Gross Domestic Product (GDP): The total market (or dollar) value of all final goods and services produced.
American Depository Receipts Sherry Chen Andrew Frankel Christina Nitz Jean Yu NYFC Partners February 27, 2002.
OAKWOOD CAPITAL MANAGEMENT LLC Annual Return (%) Equity Returns of Developed Markets Boxed Return is highest return for the year. In US dollars. Source:
2016 Global Manufacturing Competitiveness Index. 2Deloitte and US Council on Competitiveness I 2016 Global Manufacturing Competitiveness IndexCopyright.
© Cumming & Johan (2013) Institutional Context and Empirical Methods Institutional Contexts and Empirical Methods Cumming & Johan (2013, Chapter 3) 1.
Figure 1. PARTICIPATING STEM CELL DONOR REGISTRIES Number of registries Year ©BMDW.
Global Aluminium Pipe and Tube Market to 2018 (Market Size, Growth, and Forecasts in Nearly 60 Countries) Published Date: Jul-2014 Reports and Intelligence.
Presented By: Manish Gidwani 10 Kapil Israni 16
6. Ráðstefnan um rannsóknir á íslensku þjóðfélagi Háskólanum á Akureyri, 20. – 21. apríl 2012 The Nordic Countries in an International Comparison Helga.
USD billion
Assessment Of The Global Construction Market And Growth Trends In Global Economy, 2021 Published: Apr 2017 Single User PDF: US$ 4950 Order this report.
The Relation of Energy to the Macroeconomy

with Gilberto Antonelli and Pinuccia Calia
Strategic Management and Strategic Competitiveness
Levon Kazaryan, Gregory Kantorovich Higher School of Economics
Master’s Macroeconomics Introduction: Macro Data
JIAR and AOS conference
Six Sigma Total Error Percent Process Sigma 1,000, ,000 10% 2.78
Shaun A. Bond University of Cincinnati
The Most Visited Countries
Snapshot of Global PV Markets
Levon Kazaryan, Gregory Kantorovich Higher School of Economics
19 Globalization and International Investing Bodie, Kane, and Marcus
Economic Exports.
Electrification Products
Locations where Black Panther was released in the theaters in 2018.
Citi Virtual Card Accounts – Continued Global Expansion
Case 3:Templeton Growth Fund
Status of EQ-5D-5L Valuation Using Standardized Valuation Methodology
Characteristics of A State
Characteristics of a State
Probability & Statistics Probability Theory Mathematical Probability Models Event Relationships Distributions of Random Variables Continuous Random.
Characteristics of a State
Global Trends Survey September 15, 2016.
Currency Unification: Foreign Exchange Volatility and Equity Returns
Introduction to Econometrics
LOOKING BACK…focused on the future
GDP (Nominal, in trillions) 2017 World Bank
Characteristics of A State
IBM's Geographical Structure and where IBM Global Financing has clients IBM Global Financing, the world's largest IT captive financier, has a total asset.
COUNTRİES & NATİONALİTİES
Powerpoint Quiz Write down the name of the country that these images relate to. There are 18 images. Good Luck!
Characteristics of A State
Characteristics of a State
Digital transformation of tax administration
2006 Rank Adjusted for Purchasing Power
Electrification business
Characteristics of A State
Presentation transcript:

Levon Kazaryan, Gregory Kantorovich Higher School of Economics Rate of convergence in the framework of CLT and Risk evaluation on financial markets. Levon Kazaryan, Gregory Kantorovich Higher School of Economics Higher School of Economics Mexico, 2017 www.hse.ru

Introduction In economics theory and on practice often are used models with normal distribution. But empirical researches show, that using of normal distribution on practice do not take in consideration arise of fat tails. Hence, there is alternative for models based on normal distributions such as: Stable distributions Clark’s subordination model Mixture of distributions’ model General Levy processes Variable and stochastic volatility Microstructural models Various non-normal distribution models Higher School of Economics , Mexico, 2017 2 / 24

Introduction   Higher School of Economics , Mexico, 2017 3 / 24

Methods and methodology Innovative method of construction G- bounds by Y. Gabovich Hypotheses of weak form efficiency by E. Fama. Construction of G bounds for log returns of stock market indexes The rate of convergence Correlation Runs test Random walk test Test of Weak-form efficiency Methods Higher School of Economics , Mexico, 2017 4 / 24

Hypothesis H0: G bounds evaluate the risk of large losses on the stock markets more accurately than the normal distribution. H1: Indexes of observable countries are efficiency in the weak form. H2: There is a negative relationship Between the Weak-form efficiency of the stock market and the risk of large losses on it. Higher School of Economics , Mexico, 2017 5 / 24

Definition of left tail fatness   Higher School of Economics , Mexico, 2017 6 / 24

Berry-Esseen Theorem   Higher School of Economics , Mexico, 2017 7 / 24

Construction of G(n,t) tail estimates   Higher School of Economics , Mexico, 2017 8 / 24

Construction of G1(t) tail estimates   Higher School of Economics , Mexico, 2017 9 / 24

Construction of G1(t) tail estimates   Higher School of Economics , Mexico, 2017 10 / 24

Construction of G2(t) tail estimates   Higher School of Economics , Mexico, 2017 11 / 24

Refinement of G*1(t) tail estimates   Higher School of Economics , Mexico, 2017 12 / 24

Data Country Index Australia S&P/ASX 200 Austria ATX Argentina Merval Belgium BEL 20 Brazil Bovespa United Kingdom FTSE 100 Germany DAX Hong Kong Hang Seng Denmark OMXC20 Israel TA 25 India BSE Sensex Indonesia IDX Composite Country Index Ireland ISEQ Overall Spain IBEX 35 Canada S&P/TSX Malaysia KLCI Mexico IPC Netherlands AEX Russia РТС United States S&P 500 Turkey BIST 100 France CAC 40 Switzerland SMI Japan Nikkei 225 Higher School of Economics , Mexico, 2017 13 / 24

Results of construction G bounds G bounds of S&P500 t 1*σ 2*σ 3*σ 4*σ 5*σ 6*σ 7*σ 8*σ 9*σ 10*σ H(t) 0,0018 Φ(t) 0,0115 0,0799 1,4015 5,75E+01 6,35E+03 1,85E+06 1,42E+09 2,93E+12 1,61E+16 2,39E+20 Ψ(Φ,t) 1,59E-01 2,28E-02 1,30E-03 3,17E-05 2,87E-07 9,87E-10 1,28E-12 6,22E-16 1,13E-19 7,62E-24 ΔKS 0,0139 CH(t) 0.5000 0.2000 0.1000 0.0588 0.0385 0.0270 0.0200 0.0154 0.0122 0.0099 KS 0,1726 0,0367 0,0152 0,0140 G1(t) Ψ(G1,t) 0,0106 0,0496 0,1195 0,1303 0,1306 NC(t) 29,1170 29,117 22,1853 16,0240 11,8046 9,0590 7,2512 6,0329 5,7370 NN(t) 16,4237 3,7174 1,2279 0,4113 0,1520 0,0650 0,0315 0,0167 0,0097 0,0071 G2(t) Ψ(G2,t) 0,1886 0,2572 Higher School of Economics , Mexico, 2017 14 / 24

Results of construction G bounds G bounds of RTSI t 1*σ 2*σ 3*σ 4*σ 5*σ 6*σ 7*σ 8*σ 9*σ 10*σ H(t) 0.109426 0.025864 0.008953 0.004725 0.002238 0.000995 0.000249 Φ(t) 0.1587 0.0228 0.0013 3.17E-05 2.87E-07 9.87E-10 1.28E-12 6.22E-16 1.13E-19 7.62E-24 Ψ(Φ,t) 0.689512 1.134395 6.886921 149.0597 7798.778 1007880 1.94E+08 4E+11 2.2E+15 ΔKS 0.013949 CH(t) 0.5 0.2 0.1 0.058824 0.038462 0.027027 0.02 0.015385 0.012195 0.009901 KS 0.172649 0.036749 0.015249 0.01398 G1(t) Ψ(G1,t) 0.633805 0.703816 0.587139 0.337991 0.160462 0.071318 0.017829 0.020393 NC(t) 29.117 22.1853 16.024 11.8046 9.059 7.2512 6.0329 5.737 NN(t) 0.260409 0.045903 0.00897 0.002603 0.00095 0.000407 0.000197 0.000105 6.04E-05 4.43E-05 G2(t) Ψ(G2,t) 0.998089 1.815119 2.354845 2.446219 1.260554 2.37566 4.117811 Higher School of Economics , Mexico, 2017 15 / 24

Analysis of fatness of left tail Fatness of left tail S&P500 Fatness 1*σ 2*σ 3*σ 4*σ 5*σ 6*σ 7*σ 8*σ 9*σ 10*σ Ψ(Φ,t) 0.599115 1.138043 7.401509 146.7311 8103.441 1155059 5.7E+08 5.13E+11 1.21E+15 1.20E+19 Ψ(G1,t) 0.476962 0.408981 0.2294 0.114353 0.05722 0.028049 0.017952 0.007854 0.003366 0.002244 Ψ(G2,t) 0.142133 0.19251 0.220506 0.290887 0.239842 0.178169 0.161971 Fatness of left tail RTSI Fatness 1*σ 2*σ 3*σ 4*σ 5*σ 6*σ 7*σ 8*σ 9*σ 10*σ Ψ(Φ,t) 0.620846 1.236254 6.907535 118.031 6083.872 1263621 7.79E+08 8.02E+11 4.41E+15 Ψ(G1,t) 0.633805 0.703816 0.587139 0.337991 0.160462 0.071318 0.017829 0.020393 Ψ(G2,t) 0.998089 1.815119 2.354845 2.446219 1.260554 2.37566 4.117811 Higher School of Economics , Mexico, 2017 16 / 24

Garch Model S&P500 Sigma*t History Data N(0;1) Innovation G1 1 GARCH(1,1) Conditional Variance Model: ---------------------------------------- Conditional Probability Distribution: Gaussian Standard t Parameter Value Error Statistic ----------- ----------- ------------ ----------- Constant 7.71259e-07 1.30878e-07 5.89296 GARCH{1} 0.911016 0.00180184 505.604 ARCH{1} 0.0862862 0.00146257 58.9965 Sigma*t History Data N(0;1) Innovation G1 1 0,095079575 0,0912 0,031100369 0,105148522 2 0,025947376 0,0133 0,007934698 0,027248522 3 0,009621962 0,0009 0,00186967 0,014848522 4 0,004651375 0,000547221 0,013948522 5 0,002325687 0,000136805 6 0,001140043 4,56017E-05 7 0,000729627 8 0,000319212 9 10 9,12034E-05 Higher School of Economics , Mexico, 2017 17 / 24

Garch Model RTSI Sigma*t History Data N(0;1) Innovation G1 1 2 3 4 5 6 0.109425516 0.1587 0.0592 0.172648522 2 0.025864213 0.0228 0.0057 0.036748522 3 0.008952997 0.0013 0.0009 0.015248522 4 0.004725193 0.0000317 0.013980222 5 0.002238249 0.000000287 0.013948809 6 0.000994777 9.87E-10 0.013948523 7 0.000248694 1.28E-12 0.013948522 8 6.22E-16 9 1.13E-19 0.012195122 10 7.62E-24 0.00990099 Higher School of Economics , Mexico, 2017 18 / 24

Results of construction G*1 bound Applying the refinement for the G1-bound using the Vysochanskij–Petunin inequality for the RTSI t 1*σ 2*σ 3*σ 4*σ 5*σ 6*σ 7*σ 8*σ 9*σ 10*σ H(t) 0.109426 0.025864 0.008953 0.004725 0.002238 0.000995 0.000249 Φ(t) 0.1587 0.0228 0.0013 3.17E-05 2.87E-07 9.87E-10 1.28E-12 6.22E-16 1.13E-19 7.62E-24 VP(λ) 0.444444 0.111111 0.049383 0.027778 0.017778 0.012346 0.00907 0.006944 0.005487 0.004444 Ψ(Φ,t) 0.689512 1.134395 6.886921 149.0597 7798.778 1007880 1.94E+08 4E+11 2.2E+15 G1 0.172649 0.036749 0.015249 0.01398 0.013949 0.012195 0.009901 Ψ(G1,t) 0.633805 0.703816 0.587139 0.337991 0.160462 0.071318 0.017829 0.020393 G1* Ψ(G1*,t) 0.570687 0.767013 0.588896 0.267634 0.125177 0.101023 0.110002 0.071838 0.09092 Higher School of Economics , Mexico, 2017 19 / 24

Comparison of models for the RTS index Sigma*t History Data N(0;1) Innovation G1 G2 G1* -1 0.109425516 0.1587 0.0592 0.172648522 -2 0.025864213 0.0228 0.0057 0.036748522 -3 0.008952997 0.0013 0.0009 0.015248522 0.008970138 -4 0.004725193 0.0000317 0.013980222 0.002603242 -5 0.002238249 0.000000287 0.013948809 0.000950487 -6 0.000994777 9.87E-10 0.013948523 0.000406659 0.012345679 -7 0.000248694 1.28E-12 0.013948522 0.00019729 0.009070295 -8 6.22E-16 0.000104684 0.006944444 -9 1.13E-19 0.012195122 6.03948E-05 0.005486968 -10 7.62E-24 0.00990099 4.42895E-05 0.004444444 Higher School of Economics , Mexico, 2017 20 / 24

Information efficiency analysis Algorithm of testing Weak-form efficiency of stock market Results of testing Step 1. Kolmogorov–Smirnov test Step 2. Jarque–Bera test Step 3. Runs test Step 4. Random walk test Country Runs test Random Walk Test Weak-form efficiency Australia Yes   Austria No Argentina Belgium Brazil United Kingdom Germany Hong Kong Denmark Israel India Indonesia Ireland Spain Canada Malaysia Mexico Netherlands Russia United States Turkey France Switzerland Japan Runs test Random walk test Weak-form efficiency of stock market Higher School of Economics , Mexico, 2017 21 / 24

Results of logit model Results of logit model testing Coef. Std. Err. z P>|z| [95% Conf. Interval] -1*σ X 2066309 3027078 0,68 0,495 -3866654 7999272 const -0,9540378 1,929778 -0,49 0,621 -4,736332 2,828257 -2*σ 101228,70 1194578,00 0,08 0,93 -2240101,00 2442559,0 0,22 1,44 0,15 0,88 -2,60 3,04 -3*σ -226253,40 276671,00 -0,82 0,41 -768518,60 316011,70 1,68 1,71 0,98 0,33 -1,68 5,03 -4*σ -14209,27 12722,60 -1,12 0,26 -39145,11 10726,58 1,60 1,23 1,30 0,19 -0,81 4,02 -5*σ -440,3902 223,7824 -1,97 0,049 -878,9956 -1,784768 2,06 0,99 2,08 0,04 0,12 4,01 -6*σ -3,02 1,39 -2,17 0,03 -5,75 -0,30 2,10 2,26 0,02 0,28 3,92 -7*σ 0,00 -1,04 0,30 -0,01 0,79 0,61 1,31 -0,40 1,98 -8*σ -0,60 0,55 0,51 0,50 1,00 0,32 -0,48 1,49 -9*σ -1,02 0,31 0,63 1,26 0,21 -0,35 1,61 -10*σ -0,63 0,53 0,46 -0,44 1,37 Higher School of Economics , Mexico, 2017 22 / 24

Conclusion Confirmation of H0 hypothesis H1 hypothesis was partially confirmed. Confirmation of H2 hypothesis Constructed logit model let us find a negative correlation between deviation of observed indexes log returns and weak form efficiency For log returns of observed effective stock markets in the weak form fatness ratio is less than for ineffective stock markets This area of research carries great potential for further research Higher School of Economics , Mexico, 2017 23 / 24

Conclusion