Quantum Espresso code http://www.quantum-espresso.org/

Slides:



Advertisements
Similar presentations
1. 2 Molecular nanomagnets as milestones for the study of low-dimensional magnetism: fundamental physics and applications magnetism: fundamental physics.
Advertisements

Javier Junquera Exercises on basis set generation Convergence of the basis set with size.
Javier Junquera Exercises on basis set generation 1. The default basis set.
Simulating the Energy Spectrum of Quantum Dots J. Planelles.
The H 2 molecule without convergence studies Objectives: - the (pseudo)total energy - the bond length r HH Acknowledgment: exercise inspired on the first.
Quantum Theory of Solids
How to discriminate between valence and core electrons Objectives Check how the core electrons are chemically inert.
DFT Calculations Shaun Swanson.
Dr. Jie ZouPHY Chapter 43 Molecules and Solids.
Large-Scale Density Functional Calculations James E. Raynolds, College of Nanoscale Science and Engineering Lenore R. Mullin, College of Computing and.
MASTANI 2014 DAY 2 – exercise 3 scf and band structure calculations for Cu (metal) Madhura Marathe No input files available, but should be generated for.
Network for Computational Nanotechnology (NCN) Purdue, Norfolk State, Northwestern, MIT, Molecular Foundry, UC Berkeley, Univ. of Illinois, UTEP DFT Calculations.
“High-performance computational GPU-stand for teaching undergraduate and graduate students the basics of quantum-mechanical calculations“ “Komsomolsk-on-Amur.
Theoretical approach to physical properties of atom-inserted C 60 crystals 原子を挿入されたフラーレン結晶の 物性への理論的アプローチ Kusakabe Lab Kawashima Kei.
The H 2 O molecule: converging the size of the simulation box Objectives - study the convergence of the properties with the size of the unit cell.
Introduction and Overview What do we want to understand?
Modeling from the nanoscale to the macroscale - Fall 2004 Section I: ab initio electronic structure methods Part II: introduction to the computational.
- Compute and analyze the band structure of an ionic solid
Some ideas for common input/output formats for the MS codes Keisuke Hatada Dipartimento di Fisica, Università Camerino.
Test Beam Oriented CMSSW Tutorial Sergei Gleyzer Professor Harrison Prosper FIU CMS Workshop.
Tutorial: Quasiparticle and Optical Excitation Energies of the Benzene Molecule Sahar Sharifzadeh Molecular Foundry, LBNL /global/project/projectdirs/m1694/BGW-2013/7-benzene.
ISU / DEC 10 TH Joaquin Peralta, Rupa Dumpala, and Scott Broderick.
Comp. Mat. Science School 2001 Lecture 21 Density Functional Theory for Electrons in Materials Richard M. Martin Bands in GaAs Prediction of Phase Diagram.
TBPW: A Modular Framework for Pedagogical Electronic Structure Codes Todd D. Beaudet, Dyutiman Das, Nichols A. Romero, William D. Mattson, Jeongnim Kim.
Physics “Advanced Electronic Structure” Lecture 1. Theoretical Background Contents: 1. Historical Overview. 2. Basic Equations for Interacting Electrons.
How to generate a mixed pseudopotential Objectives Generate a mixed pseudopotential to be used in the Virtual Crystal Approximation or in simulations at.
Lecture 4.0 Properties of Metals. Importance to Silicon Chips Metal Delamination –Thermal expansion failures Chip Cooling- Device Density –Heat Capacity.
Dankook Univ. Depart of Physics Solid State Physics Lab. Choi hye jin
TransAT Tutorial Separation of Oil, Gas & Water July 2015 ASCOMP
Plotting the charge density of bulk Si
XSPECTRA A tool for X-ray absorption spectra (XAS) calculations C. Gougoussis, M. Calandra, A. P. Seitsonen, and F. Mauri Phys. Rev. B 80, (2009)
Tutorial of Practice #4 - Supercell & Defect formation energy -
How to prepare the interface between siesta and wannier90
1 4.1 Introduction to CASTEP (1)  CASTEP is a state-of-the-art quantum mechanics-based program designed specifically for solid-state materials science.
Tutorial of Practice #3 - DOS, band structure, wave function -
Taylor Barnes June 10, 2016 Introduction to Quantum Espresso at NERSC.
Computing lattice constant, bulk modulus and equilibrium energies of bulk cubic SrTiO 3 Bulk SrTiO 3 Cubic structure.
GPAW Setup Optimization Center for Atomic-scale Materials Design Technical University of Denmark Ask Hjorth Larsen.
Rajkamal.A Research scholar, Dept of physics, Srm university
TransAT Tutorial Backward Step May 2015 ASCOMP
Introduction to Quantum Espresso
Raman Effect The Scattering of electromagnetic radiation by matter with a change of frequency.
Electronic and Mechanical Materials Properties from DFT Calculations
Isolated Si atoms.
How to plot fat bands with siesta
BY SELLAVEL E (CA15M006) Guided By Prof.B.Viswanathan
Outline Review Material Properties Band gap Absorption Coefficient Mobility.
Band structure of a cubic perovskite oxide:
Band Structure Lab with NEMO5 Yi Shen, Nicolás Esquivel Camacho, Michael Povolotskyi ,and Gerhard Klimeck Approach: The communication between Rappture.
Interaction between Photons and Electrons
Density functional theory in practice 2/2
UML Activity Diagram Documents the Flow the of Program
Tutorial - Practice #2 - QnMSG Yong-Hyun Kim.
Introduction to Quantum ESPRESSO and Computer System
ECEE 302: Electronic Devices
PWscf, FPMD and CP (Democritos Package) Tutorial
Band-structure calculation
UML Activity Diagram Documents the Flow the of Program
High pressure, high temperature conditions
Prof. Sanjay. V. Khare Department of Physics and Astronomy,
Welcome to The Workshop
龙讯教程 How to simulate ultrafast dynamics using rt-TDDFT in Pwmat?
Theory- Si an exploration of what is a bond via charge density.
Simulations in data analysis at ILL
物質科学のための計算数理 II Numerical Analysis for Material Science II
How to prepare the interface between siesta and wannier90
物質科学のための計算数理 II Numerical Analysis for Material Science II
How to test a norm-conserving pseudopotential
PHY 752 Solid State Physics
Electronic Conductivity in Solids
Presentation transcript:

Quantum Espresso code http://www.quantum-espresso.org/

Quantum Espresso code Code organization Different executables for different tasks in QEDIR/bin Documentation in QEDIR/Doc/INPUT_XX.txt Code organization pw.x main code pp.x data analysis ph.x phonons/electron-phonon coupling dos.x density of states bands.x plot band structure pwcond.x transmitance cp.x molecular dynamics more tools avilable: x-ray spectra, optics ,EELS, superconductivity, magnetic resonance (NMR) etc..

ATOMIC _POSITI ONS {crystal} Typical input file &control prefix='si licon', pseudo_d ir='./' outdir = ‘./', / &system ibrav= 2, celldm(1) =10.2, nat= 2, ntyp= 1, ecutwfc = 12.0, &electron s ATOMIC _SPECIE S Si 28.086 Si.vbc.U PF ATOMIC _POSITI ONS {crystal} Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POIN TS automatic 2 2 2 0 0 0

Bravais Lattices: ibrav flag https://en. wikipedia

ATOMIC _POSITI ONS {crystal} Typical input file &control prefix='si licon', pseudo_d ir='./' outdir = ‘./', / &system ibrav= 2, celldm(1) =10.2, nat= 2, ntyp= 1, ecutwfc = 12.0, &electron s ATOMIC _SPECIE S Si 28.086 Si.vbc.U PF ATOMIC _POSITI ONS {crystal} Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POIN TS automatic 2 2 2 0 0 0

ATOMIC _POSITI ONS {crystal} Typical input file &control prefix='si licon', pseudo_d ir='./' outdir = ‘./', / &system ibrav= 2, celldm(1) =10.2, nat= 2, ntyp= 1, ecutwfc = 12.0, &electron s ATOMIC _SPECIE S Si 28.086 Si.vbc.U PF ATOMIC _POSITI ONS {crystal} Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POIN TS automatic 2 2 2 0 0 0

We will use only Norm-conserving pseudo types: mt, vbc, hgh

ATOMIC _POSITI ONS {crystal} Typical input file &control prefix='si licon', pseudo_d ir='./' outdir = ‘./', / &system ibrav= 2, celldm(1) =10.2, nat= 2, ntyp= 1, ecutwfc = 12.0, &electron s ATOMIC _SPECIE S Si 28.086 Si.vbc.U PF ATOMIC _POSITI ONS {crystal} Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POIN TS automatic 2 2 2 0 0 0

ATOMIC _POSITI ONS {crystal} Typical input file &control prefix='si licon', pseudo_d ir='./' outdir = ‘./', / &system ibrav= 2, celldm(1) =10.2, nat= 2, ntyp= 1, ecutwfc = 12.0, &electron s ATOMIC _SPECIE S Si 28.086 Si.vbc.U PF ATOMIC _POSITI ONS {crystal} Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POIN TS automatic 2 2 2 0 0 0

First calculation: Self-consistent calculation for Silicon in the diamond structure Espace de Travail: /media/MateriApps First tutorial: /media/MateriApps/tutorial/examples_pwscf_ex.tgz Unpack files: tar zxvf tutorial/examples_pwscf_ex.tgz Look the input file: cd examples_pwscf_ex/ emacs si.scf.in Run calculations!! pw.x < si.scf.in > output_scf

Look the output file: check electrons, convergence, etc...

Using Xcrysden to verify input/output

Using Xcrysden to verify input/output

What can we do with the total energy What can we do with the total energy? Structure optimization, phonons, compressibility, phase transitions, binding energy, etc...

Second calculation: Optimal lattice parameter for Silicon

Third calculation: Silicon band structure New calculation type &control calculati on=’nscf ’, prefix='si licon', pseudo_d ir='./' outdir = ‘./', / &system ibrav= 2, celldm(1) =10.2, nat= 2, ntyp= 1, ecutwfc = 12.0, nbnd=8 &electron s ATOMIC _SPECIE S Si 28.086 Si.vbc.U PF ATOMIC _POSITI ONS {crystal} Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POIN TS tbipa Number of bands k-points list in tbipa units (k-points list in the k-point-path file)

Bands plot bands.in file prefix = 'silicon' outdir='./' filband = 'bands.dat' / bands.in file Run bands.x bands.x < bands.in > output_scf Plot with gnuplot gnuplot gnuplot> plot ‘bands.dat.gnu’ u 1:2 w l

4th calculation: data analysis Charge density Wave-functions &inputpp prefix = 'silicon' outdir='./' filplot = 'sicharge' plot_num= 0 / &plot iflag = 3 output_format = 5 fileout = 'si.rho.xsf' &inputpp prefix = 'silicon' outdir='./' filplot = 'sicharge' plot_num= 7 kpoint=1 kband=4 lsign=.true. / &plot iflag = 3 output_format = 5 fileout = 'si.bands4.xsf' Run pp.x pp.x < si.pp_rho.in > output_pp Visualize with Xcrysden xcrysden --xsf si.rho.xsf

Data Visualization with Xcrysden Tools→ Data grid Set Isolevel