A COMPARISON OF THE MOLECULAR STRUCTURES OF C4H9OCH3, C4H9SCH3, C5H11OCH3, AND C5H11SCH3 USING MICROWAVE SPECTROSCOPY BRITTANY E. LONG, Chemistry Department,

Slides:



Advertisements
Similar presentations
MONITORING REACTION PRODUCTS USING CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY Derek S. Frank, Daniel A. Obenchain, Wei Lin, Stewart E. Novick,
Advertisements

Conclusions The spin density surfaces of the antiferromagnetic ground states demonstrate opposite spins at the ends, and alternating spins along the length.
Galen Sedo, Jane Curtis, Kenneth R. Leopold Department of Chemistry, University of Minnesota The Dipole Moment of the Sulfuric Acid Monomer.
VADIM L. STAKHURSKY *, LILY ZU †, JINJUN LIU, TERRY A. MILLER Laser Spectroscopy Facility, Department of Chemistry, The Ohio State University 120 W. 18th.
Theoretical Study of Photodissociation dynamics of Hydroxylbenzoic Acid Yi-Lun Sun and Wei-Ping Hu* Department of Chemistry and Biochemistry, National.
PURE ROTATIONAL SPECTRA OF THE REACTION PRODUCTS OF LASER ABLATED THORIUM METAL AND OXYGEN MOLECULES ENTRAINED WITHIN SUPERSONIC EXPANSIONS OF NOBLE GASES.
Electrostatic Effects in Organic Chemistry A guest lecture given in CHM 425 by Jack B. Levy March, 2003 University of North Carolina at Wilmington (subsequently.
A. J. Minei College of Mount St. Vincent, Riverdale, NY S. A. Cooke Purchase College SUNY, Purchase, NY Pure Rotational Spectroscopy of Asymmetric Tops.
Microwave Spectrum of Hydrogen Bonded Hexafluoroisopropanol  water Complex Abhishek Shahi Prof. E. Arunan Group Department of Inorganic and Physical.
THE PURE ROTATIONAL SPECTRA OF THE TWO LOWEST ENERGY CONFORMERS OF n-BUTYL ETHYL ETHER. B. E. Long, G. S. Grubbs II, and S. A. Cooke RH13.
Vibrational, Electronic, and Fluorescence Spectra and Ab Initio Calculations of 1,4-Benzodioxan (14BZD) Juan Yang, Martin Wagner, Daniel Autrey, and Jaan.
Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.
Electronic Spectroscopy of DHPH Revisited: Potential Energy Surfaces along Different Low Frequency Coordinates Leonardo Alvarez-Valtierra and David W.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
CONFORMATIONS AND BARRIERS TO METHYL GROUP INTERNAL ROTATION IN TWO ASYMMETRIC ETHERS: PROPYL METHYL ETHER AND BUTYL METHYL ETHER. TC-06: June 19 th, 2012.
Equilibrium Molecular Structure and Spectroscopic Parameters of Methyl Carbamate J. Demaison, A. G. Császár, V. Szalay, I. Kleiner, H. Møllendal.
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
Int. Symp. Molecular Spectroscopy Ohio State Univ., 2005 The Ground State Four Dimensional Morphed Potentials of HBr and HI Dimers Collaborator: J. W.
Frequency Calculations Lecture CompChem 3 Chemistry 347 Hope College.
Ab Initio and Experimental Studies of the E Internal Rotor State of He-CH 3 F Kelly J. Higgins, Zhenhong Yu, and William Klemperer, Department of Chemistry.
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
Rotational Spectra Of Cyclopropylmethyl Germane And Cyclopropylmethyl Silane: Dipole Moment And Barrier To Methyl Group Rotation Rebecca A. Peebles, Sean.
N 2 -CO 2 Consequences for Global Warming? Daniel Frohman Wesleyan University TH01 June 22, 2010.
CHIRPED PULSE AND CAVITY FOURIER TRANSFORM MICROWAVE (CP-FTMW AND FTMW) SPECTRUM OF BROMOPERFLUOROACETONE NICHOLAS FORCE, DAVID JOSEPH GILLCRIST, CASSANDRA.
1 The r 0 Structural Parameters of Equatorial Bromocyclobutane, Conformational Stability from Temperature Dependent Infrared Spectra of Xenon Solutions,
Microwave Spectroscopy and Internal Dynamics of the Ne-NO 2 Van der Waals Complex Brian J. Howard, George Economides and Lee Dyer Department of Chemistry,
Spectroscopic and Theoretical Determination of Accurate CH/  Interaction Energies in Benzene-Hydrocarbon Clusters Asuka Fujii, Hiromasa Hayashi, Jae Woo.
Formic Sulfuric Anhydride: A new chemical species with possible implications for atmospheric aerosol 1 Rebecca B. Mackenzie, Christopher T. Dewberry, and.
Vibronic Perturbations in the Electronic Spectrum of Magnesium Carbide Phalgun Lolur*, Richard Dawes*, Michael Heaven + *Department of Chemistry, Missouri.
High Resolution Electronic Spectroscopy of 9-Fluorenemethanol (9FM) in the Gas Phase Diane M. Mitchell, James A.J. Fitzpatrick and David W. Pratt Department.
Md Asmaul Reza, Jahangir Alam, Amy Mason, Neil Reilly and Jinjun Liu Department of Chemistry, University of Louisville JET-COOLED DISPERSED FLUORESCENCE.
Microwave and Ab Initio Investigations of CHCl 2 F-OCS and Related Hydrochlorofluorocarbon Complexes Rebecca A. Peebles and Amanda L. Steber Department.
OSU – June – SGK1 ADAM DALY, STEVE KUKOLICH, Dept. of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona CHAKREE TANJAROON,
THE PURE ROTATIONAL SPECTRUM OF PERFLUOROOCTANONITRILE, C 7 F 15 CN, STUDIED USING CAVITY- AND CHIRPED-PULSED FOURIER TRANSFORM MICROWAVE SPECTROSCOPIES.
The Common Chlorine Nuclear Electric Quadrupole Coupling Tensor for Acyl Chlorides R. A. Powoski and S. A. Cooke.
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
Justin Young, Leonardo Alvarez-Valtierra and David W. Pratt.
72nd International Symposium on Molecular Spectroscopy, 6/20/2017
Angelo Perera, Javix Thomas, Christian Merten,a and Yunjie Xu
~ ~ DETERMINATION OF THE TRANSITION DIPOLE MOMENT OF THE A - X
Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H
ROTATIONAL SPECTROSCOPY OF THE METHYL GLYCIDATE-WATER COMPLEX
CAVITY AND CHIRPED PULSE ROTATIONAL SPECTRUM OF THE LASER ABLATION SYNTHESIZED, OPEN-SHELL MOLECULE TIN MONOCHLORIDE, SnCl G. S. GRUBBS II, DANIEL J. FROHMAN,
MICROWAVE FREQUENCY TRANSITIONS REQUIRING LASER ABLATED URANIUM METAL DISCOVERED USING CHIRP-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY B. E. Long.
V. Ilyushin1, I. Armieieva1, O. Zakharenko2, H. S. P. Müller2, F
Michael N. Sullivan*, Jacob T. Stewart†, Michael C. Heaven*
Simplest Inorganic Double-Helix Structures
G. S. Grubbs II*, S. A. Cooke⧧, and Stewart E. Novick*,
MICROWAVE SPECTROSCOPY OF 2-PENTANONE
The CP-FTMW Spectrum of Bromoperfluoroacetone
CHIRPED PULSE AND CAVITY FOURIER TRANSFORM MICROWAVE (CP-FTMW AND FTMW) INVESTIGATIONS INTO 3-BROMO-1,1,1,2,2-PENTAFLUOROPROPANE; A MOLECULE OF ATMOSPHERIC.
M. Rezaei, J. George, L. Welbanks, and N. Moazzen-Ahmadi
The Effect of Protic Acid Identity on the Structures of Complexes with Vinyl Chloride: Fourier Transform Microwave Spectroscopy and Molecular Structure.
CAITLIN BRAY CARA RAE RIVERA E. A. ARSENAULT DANIEL A. OBENCHAIN
G. S. Grubbs IIa, Derek S. Frankb, Daniel A. Obenchainb, S. A
Methylstyrenes – Microwave Spectroscopy
Angela Y. Chung, Eric A. Arsenault, and Stewart E. Novick
Fourier transform microwave spectra of n-butanol and isobutanol
RH12, 70th International Symposium on Molecular Spectroscopy
70th International Symposium on Molecular Spectroscopy
Ashley M. Anderton, Cori L. Christenholz, Rachel E. Dorris, Rebecca A
Fourier Transform Infrared Spectral
The Conformational Landscape of Serinol
Michal M. Serafin, Sean A. Peebles
Daniel A. Obenchain, Derek S. Frank, Stewart E. Novick,
The Rotational Spectrum and Conformational Structures of Methyl Valerate LAM NGUYEN Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA)
Density Functional Resonance Theory of Metastable Negative Ions
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
Benchmark Quantum Monte Carlo Calculations for Carbon and Hydrocarbon Species James B. Anderson, Department of Chemistry, Pennsylvania State University.
Sara E. Ray and Anne B. McCoy
Presentation transcript:

A COMPARISON OF THE MOLECULAR STRUCTURES OF C4H9OCH3, C4H9SCH3, C5H11OCH3, AND C5H11SCH3 USING MICROWAVE SPECTROSCOPY BRITTANY E. LONG, Chemistry Department, Trinity University, San Antonio, TX, USA; JUAN BETANCUR, Natural and Social Science, Purchase College SUNY, Purchase, NY, USA; YOON JEONG CHOI, Department of Chemistry, Wesleyan University, Middletown, CT, USA; S. A. COOKE, Natural and Social Science, Purchase College SUNY, Purchase, NY, USA; G. S. GRUBBS II, Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, USA; JONATHAN OGULNICK and TARA HOLMES, Natural and Social Science, Purchase College SUNY, Purchase, NY, USA

Motivation American Chemical Society Petroleum Research Fund 53451-UR6 This project concerns the experimental characterizations of the potential energy surfaces of derivatives of long chain hydrocarbons. Predictive thermochemistry Gruzman and co-workers have demonstrated that correct conformational energy ordering has a significant impact on the calculated enthalpy function and Gibbs energy function for the C4 to C8 alkanes. Karton and Martin further highlight the “challenging” nature of correct energy ordering, via quantum chemical calculations, even for isomers and conformers of “simple” hydrocarbons. Engaging students out of the Organic Chemistry sequence D. Gruzman, A. Karton and J. M. L. Martin, "Performance of Ab Initio and Density Functional Methods for Conformational Equilibria of CnH2n+2 Alkane Isomers (n = 4−8)," Journal of Physical Chemistry A, vol. 113, pp. 11974-11983, 2009. A. Karton and J. M. L. Martin, "Explicitly correlated benchmark calculations on C8H8 isomer energy separations: how accurate are DFT, double-hybrid, and composite ab initio procedures?," Molecular Physics, vol. 110, 2012.

Experiments G. S. Grubbs II, R. A. Powoski, D. Jojola and S. A. Cooke. J. Phys. Chem. A 114(2010) 8009. Experiment covers 7 GHz to 18 GHz. Picture credit: C. T. Dewberry.

Spectral Handling (Talk FC09 last year) Unphased Phased/ Absorption DISPA Magnitude spectrum Absorption spectrum – Voigt profile

Rotational Constants Butyl Methyl Ether (42 transitions) A 10259.5099( 34) MHz B 1445.63599( 70) MHz C 1356.30672( 82) MHz   Butyl Methyl Thioether (23 transitions) A 7039.0615( 50) MHz B 1075.12732( 90) MHz C 1003.74855( 53) MHz Pentyl Methyl Ether (59 transitions) A 6870.5134( 90) MHz B 933.44221( 72) MHz C 865.25603( 70) MHz Pentyl Methyl Thioether (39 transitions) A 6667.1604(29) MHz B 659.24520( 37) MHz C 632.44027( 41) MHz Fit achieved using PGopher by ColinWestern see http://pgopher.chm.bris.ac.uk/

Quantum Chemical Calculations OMEGA from OpenEye Scientific was used to generate a large number (20 – 200+) of starting geometries OpenBabel file conversion Gaussian was used to optimize all starting geometries using the PBE0/6-31G level of theory.

Quantum Chemical Calculations Optimized geometries OpenBabel file conversion Shell scripts written to extract conformer energies and rotational constants

Butyl Methyl Thioether PBE0/6-31G Conformers

Butyl Methyl Thioether (23 transitions) A 7039.0615(50) MHz B 1075.12732( 90) MHz C 1003.74855( 53) MHz   PBE0/6-31G A 7068.8 MHz B 1074.4 MHz C 991.1 MHz

Pentyl Methyl Thioether PBE0/6-31G Conformers

Pentyl Methyl Thioether (39 transitions) A 6667.1604(29) MHz B 659.24520( 37) MHz C 632.44027( 41) MHz PBE0/6-31G A 6668.9 MHz B 665.2 MHz C 633.5 MHz

Butyl Methyl Thioether Pentyl Methyl Thioether Butyl Methyl Ether A / MHz 10259.51 Ia / amu Å2 49.25957 Paa / amu Å2 336.472 B / MHz 1445.636 Ib / amu Å2 349.5894 Pbb / amu Å2 36.14214 C / MHz 1356.307 Ic / amu Å2 372.6141 Pcc / amu Å2 13.11743 Butyl Methyl Thioether 7039.062 71.79636 450.8798 1075.127 470.0643 52.61184 1003.749 503.4916 19.18453 Pentyl Methyl Ether 6870.513 73.55768 525.9685 933.4422 541.4143 58.11182 865.256 584.0803 15.44586 Pentyl Methyl Thioether 6667.16 75.80124 744.9474 659.2452 766.6025 54.1462 632.4403 799.0937 21.65503 13.11 / 5 = 2.62 19.18 / 5 = 3.83 15.45 / 6 = 2.57 21.66/ 6 = 3.60

COC = 111o r(Cm-O) = 1.41Å D(COCC) = 180o D(OCCC) = 60o Butyl Methyl Ether A 10259.5099( 34) MHz B 1445.63599( 70) MHz C 1356.30672( 82) MHz V3 (internal rotation) = 781 +/- 34 cm-1   MP2/6-311++G(d,p) A 10315.61 MHz B 1452.99 MHz C 1361.69 MHz D(COCC) = 180o D(OCCC) = 60o D(CCCC) = 180o D(CSCC) = 180o D(SCCC) = 180o D(CCCC) = 65o CSC = 100o r(Cm-S) = 1.87Å Butyl Methyl Thioether A 7039.0615( 50) MHz B 1075.12732( 90) MHz C 1003.74855( 53) MHz PBE0/6-31G A 7068.8 MHz B 1074.4 MHz C 991.1 MHz

COC = 114o r(Cm-O) = 1.45Å D(COCC) = 180o D(OCCC) = 64o Pentyl Methyl Ether A 6870.5134( 90) MHz B 933.44221( 72) MHz C 865.25603( 70) MHz   MP2/6-311++G(d,p) A 6855.9 MHz B 939.0 MHz C 869.1 MHz D(COCC) = 180o D(OCCC) = 64o D(CCCC) = 180o D(CCCCm) = 180o D(CSCC) = 180o D(SCCC) = 180o D(CCCC) = 180o D(CCCCm) = 65o CSC = 100o r(Cm-S) = 1.87Å Pentyl Methyl Thioether A 6667.1604(29) MHz B 659.24520( 37) MHz C 632.44027( 41) MHz PBE0/6-31G A 6668.9 MHz B 665.2 MHz C 633.5 MHz

CH3-O/S Internal Rotation? Butyl Methyl Ether V3 (internal rotation) = 781 +/- 34 cm-1 Calculated 700 cm-1 Too little data to make any bold statements! Butyl Methyl Thioether V3 (internal rotation) > 400 cm-1 Calculated 450 cm-1

Conclusions The thioether and ether functional groups cause differences in the geometries of the alkyl tails of the butyl and pentyl species. The CSC angles in the thioethers are more acute than the COC angles in the ethers. The manifest effects of internal rotation of the O-CH3 and S-CH3 tops are very similar but more work is needed here to say anything substantive. Acknowledgements American Chemical Society Petroleum Research Fund 53451-UR6 Stew Novick and Pete Pringle for helpful conversations