Date of download: 10/6/2017 Copyright © ASME. All rights reserved.

Slides:



Advertisements
Similar presentations
Date of download: 5/28/2016 Copyright © ASME. All rights reserved. From: Forced Convection Heat Transfer in Spray Formed Copper and Nickel Foam Heat Exchanger.
Advertisements

Date of download: 5/29/2016 Copyright © ASME. All rights reserved. From: A Study on the Optimization of an Air Dehumidification Desiccant System J. Thermal.
Date of download: 6/1/2016 Copyright © ASME. All rights reserved. From: The Interplay of Heat Transfer and Endothermic Chemistry Within a Ceramic Microchannel.
Date of download: 6/3/2016 Copyright © ASME. All rights reserved. From: Effect of Second Order Velocity-Slip/Temperature-Jump on Basic Gaseous Fluctuating.
Date of download: 6/3/2016 Copyright © ASME. All rights reserved. From: Enhanced Splash Models for High Pressure Diesel Spray J. Eng. Gas Turbines Power.
Date of download: 6/22/2016 Copyright © ASME. All rights reserved. From: Dynamics of Flow in a Mechanical Heart Valve: The Role of Leaflet Inertia and.
Date of download: 6/23/2016 Copyright © ASME. All rights reserved. From: Study of the Cavitating Instability on a Grooved Venturi Profile J. Fluids Eng.
Date of download: 6/23/2016 Copyright © ASME. All rights reserved. From: A Batchelor Vortex Model for Mean Velocity of Turbulent Swirling Flow in a Macroscale.
Date of download: 6/27/2016 Copyright © ASME. All rights reserved. From: Comparative Study in Predicting the Global Solar Radiation for Darwin, Australia.
Date of download: 6/27/2016 Copyright © ASME. All rights reserved. From: Optical Microscopy-Aided Indentation Tests J. Eng. Mater. Technol. 2008;130(1):
Date of download: 6/28/2016 Copyright © ASME. All rights reserved. From: Stability of Carotid Artery Under Steady-State and Pulsatile Blood Flow: A Fluid–Structure.
Date of download: 6/29/2016 Copyright © ASME. All rights reserved. From: Double-Layer Microchannel Heat Sinks With Transverse-Flow Configurations J. Electron.
Date of download: 7/3/2016 Copyright © ASME. All rights reserved. From: Analysis of Flow and Thermal Performance of a Water-Cooled Transversal Wavy Microchannel.
Date of download: 9/18/2016 Copyright © ASME. All rights reserved. From: Droplet Detachment Mechanism in a High-Speed Gaseous Microflow J. Fluids Eng.
Date of download: 9/18/2016 Copyright © ASME. All rights reserved.
Date of download: 9/18/2016 Copyright © ASME. All rights reserved. From: Oscillating Heat Transfer Correlations for Spiral-Coil Thermoacoustic Heat Exchangers.
Date of download: 11/13/2016 Copyright © ASME. All rights reserved. From: Numerical Analysis of the Iridescent Ring Around Cavitation Erosion Pit on Stainless.
Date of download: 9/25/2017 Copyright © ASME. All rights reserved.
Date of download: 9/27/2017 Copyright © ASME. All rights reserved.
From: Thermal-Hydraulic Performance of MEMS-based Pin Fin Heat Sink
From: Hydraulic Loss of Finite Length Dividing Junctions
Date of download: 10/7/2017 Copyright © ASME. All rights reserved.
Date of download: 10/7/2017 Copyright © ASME. All rights reserved.
Date of download: 10/8/2017 Copyright © ASME. All rights reserved.
From: Pressure Surge During Cryogenic Feedline Chilldown Process
Date of download: 10/10/2017 Copyright © ASME. All rights reserved.
Date of download: 10/11/2017 Copyright © ASME. All rights reserved.
Date of download: 10/12/2017 Copyright © ASME. All rights reserved.
Date of download: 10/13/2017 Copyright © ASME. All rights reserved.
From: Boilers Optimal Control for Maximum Load Change Rate
Date of download: 10/14/2017 Copyright © ASME. All rights reserved.
Date of download: 10/17/2017 Copyright © ASME. All rights reserved.
Date of download: 10/21/2017 Copyright © ASME. All rights reserved.
Date of download: 10/22/2017 Copyright © ASME. All rights reserved.
Date of download: 10/23/2017 Copyright © ASME. All rights reserved.
Date of download: 10/26/2017 Copyright © ASME. All rights reserved.
Date of download: 10/26/2017 Copyright © ASME. All rights reserved.
Date of download: 10/26/2017 Copyright © ASME. All rights reserved.
Date of download: 10/27/2017 Copyright © ASME. All rights reserved.
Date of download: 10/28/2017 Copyright © ASME. All rights reserved.
From: Non-Newtonian Drops Spreading on a Flat Surface
Date of download: 11/2/2017 Copyright © ASME. All rights reserved.
Date of download: 11/3/2017 Copyright © ASME. All rights reserved.
Date of download: 11/3/2017 Copyright © ASME. All rights reserved.
Date of download: 11/5/2017 Copyright © ASME. All rights reserved.
Date of download: 11/7/2017 Copyright © ASME. All rights reserved.
Date of download: 11/8/2017 Copyright © ASME. All rights reserved.
Date of download: 11/9/2017 Copyright © ASME. All rights reserved.
Date of download: 11/9/2017 Copyright © ASME. All rights reserved.
Date of download: 11/9/2017 Copyright © ASME. All rights reserved.
Date of download: 11/14/2017 Copyright © ASME. All rights reserved.
Date of download: 12/16/2017 Copyright © ASME. All rights reserved.
Date of download: 12/21/2017 Copyright © ASME. All rights reserved.
Date of download: 12/21/2017 Copyright © ASME. All rights reserved.
Date of download: 12/21/2017 Copyright © ASME. All rights reserved.
Date of download: 12/22/2017 Copyright © ASME. All rights reserved.
Date of download: 12/23/2017 Copyright © ASME. All rights reserved.
From: Vapor Chamber Acting as a Heat Spreader for Power Module Cooling
From: Modeling a Phase Change Thermal Storage Device
Date of download: 12/27/2017 Copyright © ASME. All rights reserved.
Date of download: 12/31/2017 Copyright © ASME. All rights reserved.
Date of download: 12/31/2017 Copyright © ASME. All rights reserved.
Date of download: 1/1/2018 Copyright © ASME. All rights reserved.
From: The Multimodal Dynamics of a Walnut Tree: Experiments and Models
Date of download: 1/2/2018 Copyright © ASME. All rights reserved.
Date of download: 1/7/2018 Copyright © ASME. All rights reserved.
From: Electrohydrodynamics of Thin Flowing Films
Date of download: 3/4/2018 Copyright © ASME. All rights reserved.
Date of download: 3/8/2018 Copyright © ASME. All rights reserved.
From: Modeling of Particle-Laden Cold Flow in a Cyclone Gasifier
Presentation transcript:

Date of download: 10/6/2017 Copyright © ASME. All rights reserved. From: A General Model for Predicting Low Reynolds Number Flow Pressure Drop in Non-Uniform Microchannels of Non-Circular Cross Section in Continuum and Slip-Flow Regimes J. Fluids Eng. 2013;135(7):071205-071205-7. doi:10.1115/1.4023785 Figure Legend: Schematic of (a) a straight, and (b) a variable cross section microchannel of arbitrary cross section

Date of download: 10/6/2017 Copyright © ASME. All rights reserved. From: A General Model for Predicting Low Reynolds Number Flow Pressure Drop in Non-Uniform Microchannels of Non-Circular Cross Section in Continuum and Slip-Flow Regimes J. Fluids Eng. 2013;135(7):071205-071205-7. doi:10.1115/1.4023785 Figure Legend: Comparison of the proposed model for the no-slip condition and the available data for the (a) rectangular [15,38–40], (b) trapezoidal [26], and (c) circular sector [26], and circular segment [26] microchannels

Date of download: 10/6/2017 Copyright © ASME. All rights reserved. From: A General Model for Predicting Low Reynolds Number Flow Pressure Drop in Non-Uniform Microchannels of Non-Circular Cross Section in Continuum and Slip-Flow Regimes J. Fluids Eng. 2013;135(7):071205-071205-7. doi:10.1115/1.4023785 Figure Legend: Comparison of the proposed model for the slip condition and the available data in the literature for the (a) circular (Kim et al. [41]), (b) rectangular (Morini [9]), (c) trapezoidal (Araki et al. [42]), and (d) double-trapezoidal (Morini [9]) cross section microchannels

Date of download: 10/6/2017 Copyright © ASME. All rights reserved. From: A General Model for Predicting Low Reynolds Number Flow Pressure Drop in Non-Uniform Microchannels of Non-Circular Cross Section in Continuum and Slip-Flow Regimes J. Fluids Eng. 2013;135(7):071205-071205-7. doi:10.1115/1.4023785 Figure Legend: Schematic of the studied channel with the stream-wise periodic wall with a linear wall profile. The channel cross section is rectangular with constant channel depth.

Date of download: 10/6/2017 Copyright © ASME. All rights reserved. From: A General Model for Predicting Low Reynolds Number Flow Pressure Drop in Non-Uniform Microchannels of Non-Circular Cross Section in Continuum and Slip-Flow Regimes J. Fluids Eng. 2013;135(7):071205-071205-7. doi:10.1115/1.4023785 Figure Legend: Comparison of the proposed unified model and experimental data of Akbari et al. [25] for the stream-wise periodic geometry with rectangular cross section. Each data point is averaged over the considered range of Reynolds numbers 2–15. The flow resistance is normalized with a reference straight channel. The geometrical parameters in this plot are the deviation parameter defined as ξ = δ/a0 and the average aspect ratio defined as ε0 = h/a0, where h is the channel height, a0 is the average width of the channel, and δ is the maximum deviation of the channel width from its average.