Bayesian modeling and analysis of stochastic volatility in finance

Slides:



Advertisements
Similar presentations
Cointegration and Error Correction Models
Advertisements

Introduction Describe what panel data is and the reasons for using it in this format Assess the importance of fixed and random effects Examine the Hausman.
Copyright(© MTS-2002GG): You are free to use and modify these slides for educational purposes, but please if you improve this material send us your new.
Time Series Building 1. Model Identification
Linear Regression.
Relationship Between Commodities and Currency Pair Realized Variance Derrick Hang Econ 201FS April 28, 2010.
Derrick Hang February 10, 2010 Economics 201FS. Apple Inc. (AAPL): January 16, 1997 – January 7, ,920 Days IBM (IBM): April 9, 1997 – January 7,
Various topics Petter Mostad Overview Epidemiology Study types / data types Econometrics Time series data More about sampling –Estimation.
Lecture 6 Dr. Haider Shah.  Understand what are the primary tools for forecasting  Understand regression analysis and when and how to apply it.
Cointegration in Single Equations: Lecture 5
Univariate Time series - 2 Methods of Economic Investigation Lecture 19.
High Frequency Data Analysis Sharon Lee Econ 201 FS February 4, 2009.
Analysis of Financial Data Spring 2012 Lecture 9: Volatility Priyantha Wijayatunga Department of Statistics, Umeå University
An Introduction to Error Correction Models (ECMs)
Generic Prices Forecasting and Mega Trends. How do companies forecast generic prices?
Jan 2016 Solar Lunar Data.
CURRENCY TRADING.
Mechanics of Futures Markets
Nonstationary Time Series Data and Cointegration
Financial Econometrics Lecture Notes 2
OPERATIONS MANAGEMENT for MBAs Fourth Edition
An Assessment of Climate Change
Ch8 Time Series Modeling
Foreign Exchange Market
The PHILLIPS CURVE Theory and Evidence.
Brain Teasers You’ve got a 10 x 10 x 10 cube made up of 1 x 1 x 1 smaller cubes. The outside of the larger cube is completely painted red. On how many.
Instrumental Variables and Two Stage Least Squares
FOREX MARKET (МЕЃУНАРОДЕН ДЕВИЗЕН ПАЗАР) ПРЕДАВАЧИ:
Average Monthly Temperature and Rainfall
STATIONARY AND NONSTATIONARY TIME SERIES


Problem of the Day This equation shows how the total cost of a members-only speaker series is related to the number of events attended. c = a + 18 The.
Econ201FS- New Jump Test Haolan Cai.
Instrumental Variables and Two Stage Least Squares
INTRO 2 FOREX QUICK START TRAINING
Gantt Chart Enter Year Here Activities Jan Feb Mar Apr May Jun Jul Aug
Unit Roots 31/12/2018.
Demand Based on problem 4.15 from Glover, Klingman, and Phillips
Kunal Jain February 17, 2010 Economics 201FS
Stochastic Volatility Model: High Frequency Data
Stochastic Volatility Models: Bayesian Framework

Business and Innovation Cycles in the US Upstream Oil and Gas Industry Robert Kleinberg, PhD Columbia University Center on Global Energy Policy Boston.
Unit Root & Augmented Dickey-Fuller (ADF) Test
Derrick Hang February 24, 2010 Economics 201FS
Kunal Jain March 24, 2010 Economics 201FS
Instrumental Variables and Two Stage Least Squares
Introduction to Time Series
Preliminary Data Analysis
Multiple Regression – Split Sample Validation

Preliminary Data Analysis
Text for section 1 1 Text for section 2 2 Text for section 3 3
Text for section 1 1 Text for section 2 2 Text for section 3 3
Text for section 1 1 Text for section 2 2 Text for section 3 3
Text for section 1 1 Text for section 2 2 Text for section 3 3
Lecturer Dr. Veronika Alhanaqtah

Text for section 1 1 Text for section 2 2 Text for section 3 3
Text for section 1 1 Text for section 2 2 Text for section 3 3
Text for section 1 1 Text for section 2 2 Text for section 3 3
Time series.
Text for section 1 1 Text for section 2 2 Text for section 3 3
Text for section 1 1 Text for section 2 2 Text for section 3 3
Text for section 1 1 Text for section 2 2 Text for section 3 3
Time Series introduction in R - Iñaki Puigdollers
FORECASTING VOLATILITY I
Introduction to Time Series Econometrics with Eviews
Presentation transcript:

Bayesian modeling and analysis of stochastic volatility in finance Derrick Hang April 6, 2010 Economics 201FS

Review from Last Time Regress for Prices: Possible useful predictors of prices are lost when we take the difference between prices to obtain returns In general , we expect

Addressing Stationarity Concerns Classic tests for stationarity of an AR time series (i.e. Dickey-Fuller, Phillips-Peron, etc.) test the coefficient on the lagged time-series for a unit root However, these tests assume a CONSTANT coefficient and have LOW POWER DLM allows for the possibility of “pockets of stationarity” and will reject unit root null at values close to 1 Does stationarity of a model matter if we are looking for short term forecasting?

The Data Jan 2, 2009 – June 31, 2009 (excluding April 10th) Data for market hours only (no weekend) : 9:35AM – 3:55PM 5 Minute Data (9778 total points for each dataset) All prices logged 10 dependent variable (USD/variable): AUD, CHF, EUR, GBP, JPY, NZD, CAD, NOK, SGD, ZAR 12 independent variable: 10 lagged forex variables, brent oil futures, comex gold futures Focus on AUD, GBP, JPY, brent, gold

Back to Basics: Jump Testing What is the relationship –if any- between jump days and periods of non-unit roots?

Back to Basics: Jump Testing

Back to Basics: Jump Testing

Back to Basics: Jump Testing

Back to Basics: Jump Testing 0.1% Significance Level = 25 / 127 (2.23%) 1% Significance Level = 6 / 127 (4.72%) 5% Significance Level = 1 / 127 (19.69%)

Back to Basics: Jump Testing 0.1% Significance Level = 5 / 127 (3.94%) 1% Significance Level = 11 / 127 (8.66%) 5% Significance Level = 24 / 127 (18.90%)

Back to Basics: Jump Testing 0.1% Significance Level = 3 / 127 (2.36%) 1% Significance Level = 15/ 127 (11.81%) 5% Significance Level = 38 / 127 (25.98%)

Time-Varying Coefficient: Lagged GBP, JPY

Time-Varying Coefficient: Brent, Gold

Time-Varying Coefficient: Lagged AUD

Significant Windows: Lagged AUD (descending order) Start End 03-Jun-2009 09:40:00 11-Jun-2009 14:55:00 14-Jan-2009 09:35:00 20-Jan-2009 15:55:00 18-Mar-2009 10:50:00 23-Mar-2009 15:55:00 30-Mar-2009 09:35:00 02-Apr-2009 13:25:00 25-Jun-2009 09:40:00 29-Jun-2009 15:55:00 22-Jun-2009 09:35:00 24-Jun-2009 15:00:00 08-Apr-2009 09:35:00 13-Apr-2009 12:45:00 10-Mar-2009 10:25:00 12-Mar-2009 13:00:00 27-Jan-2009 09:35:00 28-Jan-2009 15:55:00 09-Feb-2009 09:50:00 10-Feb-2009 15:55:00 19-Feb-2009 11:00:00 20-Feb-2009 14:45:00 12-Jun-2009 14:25:00 16-Jun-2009 10:55:00 06-Mar-2009 13:35:00 10-Mar-2009 09:50:00 17-Apr-2009 14:15:00 20-Apr-2009 14:25:00 30-Jan-2009 09:35:00 02-Feb-2009 09:35:00

Jump Days: AUD (5% level) 08-Jan-2009 09:40:00 16-Jan-2009 09:40:00 28-Jan-2009 09:40:00 02-Feb-2009 09:40:00 03-Feb-2009 09:40:00 04-Feb-2009 09:40:00 23-Feb-2009 09:40:00 (03-Mar-2009 09:40:00) 12-Mar-2009 09:40:00 23-Mar-2009 09:40:00 31-Mar-2009 09:40:00 01-Apr-2009 09:40:00 13-Apr-2009 09:40:00 15-Apr-2009 09:40:00 16-Apr-2009 09:40:00 01-May-2009 09:40:00 08-May-2009 09:40:00 15-May-2009 09:40:00 20-May-2009 09:40:00 22-May-2009 09:40:00 02-Jun-2009 09:40:00 04-Jun-2009 09:40:00 05-Jun-2009 09:40:00 10-Jun-2009 09:40:00 11-Jun-2009 09:40:00

Jump Days: AUD (1% and 0.1% level) 08-Jan-2009 09:40:00 12-Mar-2009 09:40:00 13-Apr-2009 09:40:00 15-May-2009 09:40:00 22-May-2009 09:40:00 04-Jun-2009 09:40:00 0.1% 04-Jun-2009 09:40:00

Significant Windows: Lagged AUD, GBP, JPY (descending order) Start End 30-Mar-2009 09:35:00 01-Apr-2009 13:20:00 03-Mar-2009 09:35:00 05-Mar-2009 11:05:00 10-Mar-2009 12:20:00 12-Mar-2009 13:00:00 26-Jun-2009 11:00:00 29-Jun-2009 15:55:00 29-Jan-2009 09:45:00 30-Jan-2009 13:50:00 27-Jan-2009 09:35:00 28-Jan-2009 09:55:00 19-Feb-2009 14:30:00 20-Feb-2009 14:45:00 17-Apr-2009 14:15:00 20-Apr-2009 14:25:00 06-Mar-2009 15:50:00 09-Mar-2009 15:55:00

Jump Days: AUD (5% level) 08-Jan-2009 09:40:00 16-Jan-2009 09:40:00 28-Jan-2009 09:40:00 02-Feb-2009 09:40:00 03-Feb-2009 09:40:00 04-Feb-2009 09:40:00 23-Feb-2009 09:40:00 03-Mar-2009 09:40:00 12-Mar-2009 09:40:00 23-Mar-2009 09:40:00 31-Mar-2009 09:40:00 01-Apr-2009 09:40:00 13-Apr-2009 09:40:00 15-Apr-2009 09:40:00 16-Apr-2009 09:40:00 01-May-2009 09:40:00 08-May-2009 09:40:00 15-May-2009 09:40:00 20-May-2009 09:40:00 22-May-2009 09:40:00 02-Jun-2009 09:40:00 04-Jun-2009 09:40:00 05-Jun-2009 09:40:00 10-Jun-2009 09:40:00 11-Jun-2009 09:40:00

Jump Days: AUD (1% and 0.1% level) 08-Jan-2009 09:40:00 12-Mar-2009 09:40:00 13-Apr-2009 09:40:00 15-May-2009 09:40:00 22-May-2009 09:40:00 04-Jun-2009 09:40:00 0.1% 04-Jun-2009 09:40:00

Significant Windows: Lagged AUD, Brent, Gold (descending order) Start End 30-Mar-2009 09:35:00 02-Apr-2009 09:35:00 19-Mar-2009 11:10:00 23-Mar-2009 14:30:00 10-Mar-2009 10:25:00 12-Mar-2009 13:00:00

Jump Days: AUD (5% level) 08-Jan-2009 09:40:00 16-Jan-2009 09:40:00 28-Jan-2009 09:40:00 02-Feb-2009 09:40:00 03-Feb-2009 09:40:00 04-Feb-2009 09:40:00 23-Feb-2009 09:40:00 03-Mar-2009 09:40:00 12-Mar-2009 09:40:00 23-Mar-2009 09:40:00 31-Mar-2009 09:40:00 01-Apr-2009 09:40:00 13-Apr-2009 09:40:00 15-Apr-2009 09:40:00 16-Apr-2009 09:40:00 01-May-2009 09:40:00 08-May-2009 09:40:00 15-May-2009 09:40:00 20-May-2009 09:40:00 22-May-2009 09:40:00 02-Jun-2009 09:40:00 04-Jun-2009 09:40:00 05-Jun-2009 09:40:00 10-Jun-2009 09:40:00 11-Jun-2009 09:40:00

Jump Days: AUD (1% and 0.1% level) 08-Jan-2009 09:40:00 12-Mar-2009 09:40:00 13-Apr-2009 09:40:00 15-May-2009 09:40:00 22-May-2009 09:40:00 04-Jun-2009 09:40:00 0.1% 04-Jun-2009 09:40:00

Initial Findings From the data so far, we have seen that the largest windows contain days declared as jump days Most of the time, windows that contain entire days have a “jump day” inside it Windows where multiple regressors are significant also contain declared jump days What does this all mean?

Further Research Look to see if the relationship between large windows and jump days exist with the other dependent currency datasets Short term forecasts inside this windows? Try with different jump tests (other than Mean-adjusted TP) Fix bugs in code