Structure of the Internet

Slides:



Advertisements
Similar presentations
M A Wajid Tanveer Infrastructure M A Wajid Tanveer
Advertisements

Advanced Networks 1. Delayed Internet Routing Convergence 2. The Impact of Internet Policy and Topology on Delayed Routing Convergence.
1 Interdomain Routing Protocols. 2 Autonomous Systems An autonomous system (AS) is a region of the Internet that is administered by a single entity and.
The need for BGP AfNOG Workshops Philip Smith. “Keeping Local Traffic Local”
© 2007 Cisco Systems, Inc. All rights reserved.Cisco Public 1 Version 4.1 Routing Working at a Small-to-Medium Business or ISP – Chapter 6.
Advanced Topics of WAN Compiled from Previous ISQS 6341 Project November 2003.
Mini Introduction to BGP Michalis Faloutsos. What Is BGP?  Border Gateway Protocol BGP-4  The de-facto interdomain routing protocol  BGP enables policy.
Mod 10 – Routing Protocols
Spring 2003CS 4611 Routing Outline Algorithms Scalability.
Kae Hsu Communication Network Dept. Redundant Internet service provision - customer viewpoint.
Network Monitoring for Internet Traffic Engineering Jennifer Rexford AT&T Labs – Research Florham Park, NJ 07932
Lecture Week 3 Introduction to Dynamic Routing Protocol Routing Protocols and Concepts.
Border Gateway Protocol (BGP4) Rizwan Rehman, CCS, DU.
1 Semester 2 Module 6 Routing and Routing Protocols YuDa college of business James Chen
Information-Centric Networks07b-1 Week 7 / Paper 2 NIRA: A New Inter-Domain Routing Architecture –Xiaowei Yang, David Clark, Arthur W. Berger –IEEE/ACM.
Dr. John P. Abraham Professor University of Texas Pan American Internet Routing and Routing Protocols.
Routing and Routing Protocols Routing Protocols Overview.
M.Menelaou CCNA2 ROUTING. M.Menelaou ROUTING Routing is the process that a router uses to forward packets toward the destination network. A router makes.
1 © 2003, Cisco Systems, Inc. All rights reserved. CCNA 2 Module 6 Routing and Routing Protocols.
1. 2 Anatomy of an IP Packet IP packets consist of the data from upper layers plus an IP header. The IP header consists of the following:
14-Oct-154/598N: Computer Networks Internet Structure - Past NSFNET backbone Stanford BARRNET regional Berkeley PARC NCAR UA UNM Westnet regional UNL KU.
1 Directions in IPv6 Implementations Patrick Grossetete Cisco IOS IPv6 Product Manager Patrick Grossetete Cisco IOS IPv6 Product Manager.
CCNA 2 Week 6 Routing Protocols. Copyright © 2005 University of Bolton Topics Static Routing Dynamic Routing Routing Protocols Overview.
Oz – Foundations of Electronic Commerce © 2002 Prentice Hall Essentials of Telecommunications.
© 2005 Cisco Systems, Inc. All rights reserved. BGP v3.2—6-1 Scaling Service Provider Networks Scaling IGP and BGP in Service Provider Networks.
The State of the IETF Keeping one Internet Harald Alvestrand, IETF chair Antalya, May 13, 2001.
Spring 2008CPE Computer Networks1 Routing: Part II Outline Algorithms Scalability Reading: Section 4.3.
© 2007 Cisco Systems, Inc. All rights reserved.Cisco Public 1 Version 4.1 Routing Working at a Small-to-Medium Business or ISP – Chapter 6.
1 CS716 Advanced Computer Networks By Dr. Amir Qayyum.
“Your application performance is only as good as your network” (4)
Instructor Materials Chapter 3: Branch Connections
Working at a Small-to-Medium Business or ISP – Chapter 6
Communication Networks: Technology & Protocols
Autonomous Systems An autonomous system is a region of the Internet that is administered by a single entity. Examples of autonomous regions are: UVA’s.
Boarder Gateway Protocol (BGP)
BGP 1. BGP Overview 2. Multihoming 3. Configuring BGP.
A Straw-Man Pricing Model Addressing the Multicast Deployment Problem
Border Gateway Protocol
Wide Area Network.
BGP supplement Abhigyan Sharma.
Introduction to Networks
The State of the IETF Keeping one Internet
Ken Gunnells, Ph.D. - Networking Paul Crigler - Programming
Chapter 4: Network Layer
Introduction to Internet Routing
Net 323 D: Networks Protocols
Routing.
Chapter 8: Internet Operation
Net 323 D: Networks Protocols
Chapter 3: Branch Connections
Autonomous Systems An autonomous system is a region of the Internet that is administered by a single entity. Examples of autonomous regions are: UVA’s.
What’s “Inside” a Router?
BGP Overview BGP concepts and operation.
Routers Routing algorithms
© 2006 ITT Educational Services Inc.
Ch 15 Network Characteristics
Computer Networking A computer network, often simply referred to as a network, is a collection of computers and devices connected by communications channels.
Computer Networking A computer network, often simply referred to as a network, is a collection of computers and devices connected by communications channels.
Use of Simplex Satellite Configurations to support Internet Traffic
BGP Issues BGP is a reachability protocol ISP issues
Chapter 3 Part 3 Switching and Bridging
Working at a Small-to-Medium Business or ISP – Chapter 6
COMP/ELEC 429/556 Introduction to Computer Networks
COMPUTER NETWORKS CS610 Lecture-41 Hammad Khalid Khan.
Resource Negotiation, Pricing and QoS
Computer Networks Protocols
Routing.
QoS routing Finding a path that can satisfy the QoS requirement of a connection. Achieving high resource utilization.
Chapter 4: Network Layer
CCNA 2 JEOPARDY Module 6.
Presentation transcript:

Structure of the Internet Fred Baker

Campus Networks (LANs) Today’s Internet Campus Networks (LANs) The optical internet backbone Gigabit to terabit links UoSAT-12 Internet in Airlines Access networks xDSL, cable modem, ISDN, asynchronous dial 20,000 instantaneous sessions per GBPS backbone bandwidth

Nearby Traceroute traceroute to www.LB-A.stanford.edu (171.64.14.238), 30 hops max, 40 byte packets  1  sjcm-dc-gw1.cisco.com (171.69.25.2)  0.86 ms  0.49 ms  0.54 ms  2  sjce-sbb1-gw1.cisco.com (171.69.14.113)  0.54 ms  0.48 ms  0.35 ms  3  sjck-rbb-gw2.cisco.com (171.69.14.45)  0.39 ms  0.39 ms  0.48 ms  4  sj-wall-1.cisco.com (171.69.7.182)  0.59 ms  0.35 ms  0.51 ms  5  sjce-dirty-gw1.cisco.com (128.107.240.197)  2.01 ms  0.74 ms  0.66 ms  6  barrnet-gw.cisco.com (128.107.239.54)  1.88 ms  0.67 ms  0.60 ms  7  p3-3.paloalto-cr2.bbnplanet.net (4.0.26.13)  3.13 ms  1.74 ms  1.48 ms  8  p1-0-0.paloalto-cr9.bbnplanet.net (4.0.2.214)  2.94 ms  1.73 ms  2.94 ms  9  f0-0.paloalto-cr13.bbnplanet.net (131.119.4.22)  5.07 ms  2.22 ms  1.86 ms 10  sunet-gateway.stanford.edu (198.31.10.1)  7.36 ms  4.42 ms  1.81 ms

Nearby Traceroute traceroute to arachne.berkeley.edu (169.229.131.109), 30 hops max, 40 byte packets  1  sjcm-dc-gw1.cisco.com (171.69.25.2)  0.85 ms  0.57 ms  0.60 ms  2  sjce-sbb1-gw1.cisco.com (171.69.14.113)  0.50 ms  0.38 ms  0.40 ms  3  sjce-rbb-gw1.cisco.com (171.69.14.33)  0.56 ms  0.42 ms  0.44 ms  4  sj-wall-1.cisco.com (171.69.7.170)  0.46 ms  0.47 ms  0.37 ms  5  sjce-dirty-gw1.cisco.com (128.107.240.197)  0.69 ms  0.86 ms  1.11 ms  6  barrnet-gw.cisco.com (128.107.239.54)  0.63 ms  2.33 ms  0.60 ms  7  p3-3.paloalto-cr2.bbnplanet.net (4.0.26.13)  2.04 ms  1.39 ms  1.36 ms  8  p7-1.paloalto-nbr2.bbnplanet.net (4.0.6.77)  1.53 ms  1.53 ms  1.43 ms  9  p1-0.paix-bi1.bbnplanet.net (4.0.6.102)  1.76 ms  1.84 ms  2.19 ms 10  p0-0.xpaix21-qwest.bbnplanet.net (4.2.49.14)  1.94 ms  1.77 ms  1.83 ms 11  205.171.205.29 (205.171.205.29)  3.24 ms  3.80 ms  3.50 ms 12  205.171.14.98 (205.171.14.98)  3.91 ms  3.34 ms  2.70 ms 13  65.113.32.210 (65.113.32.210)  4.14 ms  2.61 ms  3.02 ms 14  QSV-M10-C2.GE.calren2.net (137.164.12.166)  4.40 ms  2.76 ms  2.55 ms 15  atm1-1-0dot1.inr-new-666-doecev.Berkeley.EDU (128.32.0.69)  7.08 ms  6.25 ms  5.70 ms 16  vlan196.inr-202-doecev.Berkeley.EDU (128.32.0.75)  9.39 ms  10.38 ms  8.58 ms 17  vlan210.inr-203-eva.Berkeley.EDU (128.32.255.10)  11.67 ms  13.90 ms  13.32 ms 18  arachne.Berkeley.EDU (169.229.131.109)  12.27 ms  8.01 ms  8.05 ms

International Traceroute traceroute to bells.cs.ucl.ac.uk (128.16.5.31), 30 hops max, 40 byte packets  1  sjcm-dc-gw1.cisco.com (171.69.25.2)  0.83 ms  0.67 ms  0.85 ms  2  sjce-sbb1-gw1.cisco.com (171.69.14.113)  0.47 ms  1.43 ms  0.41 ms  3  sjce-rbb-gw1.cisco.com (171.69.14.33)  0.44 ms  0.37 ms  0.34 ms  4  sj-wall-1.cisco.com (171.69.7.170)  0.39 ms  0.37 ms  0.35 ms  5  sjce-dirty-gw1.cisco.com (128.107.240.197)  1.65 ms  0.68 ms  0.61 ms  6  sjc-k-isp-gw1.cisco.com (128.107.239.90)  1.94 ms  1.53 ms  0.62 ms  7  POS2-3.GW5.SJC2.ALTER.NET (65.208.80.241)  2.28 ms  3.43 ms  2.35 ms  8  161.ATM5-0.XR2.SJC2.ALTER.NET (146.188.144.54)  2.62 ms  1.41 ms  1.22 ms  9  0.so-1-0-0.XL2.SJC2.ALTER.NET (152.63.56.141)  3.11 ms  2.27 ms  1.57 ms 10  0.so-3-0-0.TL2.SAC1.ALTER.NET (152.63.54.10)  5.77 ms  4.80 ms  4.77 ms 11  0.so-7-0-0.IL2.NYC9.ALTER.NET (152.63.9.185)  71.02 ms  69.89 ms  69.77 ms 12  so-1-0-0.IR2.NYC12.ALTER.NET (152.63.23.70)  71.09 ms  69.91 ms  70.65 ms 13  so-5-0-0.TR1.LND9.Alter.Net (146.188.15.49)  142.83 ms  141.74 ms  141.50 ms 14  so-5-0-0.XR2.LND9.Alter.Net (146.188.15.38)  146.52 ms  144.97 ms  145.10 ms 15  pos2-0.gw1.lnd9.alter.net (158.43.150.146)  142.46 ms  141.63 ms  142.83 ms 16  ukerna-gw.pipex.net (158.43.37.202)  142.69 ms  141.64 ms  141.42 ms 17  po15-0.lond-scr.ja.net (146.97.35.137)  142.95 ms  141.62 ms  141.63 ms 18  po0-0.london-bar1.ja.net (146.97.35.2)  142.86 ms  141.86 ms  141.74 ms 19  146.97.40.34 (146.97.40.34)  142.89 ms  141.81 ms  141.81 ms 20  ucl.lmn.net.uk (194.83.101.6)  146.57 ms  145.71 ms  145.40 ms 21  128.40.20.61 (128.40.20.61)  143.63 ms  142.67 ms  143.36 ms 22  128.40.20.14 (128.40.20.14)  147.24 ms  145.81 ms  145.76 ms 23  cisco.cs.ucl.ac.uk (128.40.14.1)  147.48 ms  145.97 ms  145.84 ms 24  bells.cs.ucl.ac.uk (128.16.5.31)  172.75 ms  142.54 ms  146.16 ms

Autonomous System Interconnection Access Networks AS: “A routing system using a single protocol and under common administration” AS in center High connectivity AS at edge Low connectivity Major ISPs

Routing by contract BGP Routing is essentially routing by contract Goal is not to achieve a good route, but a usable one for which money changes hands Broad contract categories: “Peering” “Transit”

Peering Contracts Contract among equals “I will advertise my customers to you” To get full routes, have to peer with every major network Relatively expensive to service Packets that enter my network will always be delivered in my network Peering contracts may produce little or no revenue, as they are essentially a trade for access to peer’s customers

Transit contracts Contract between provider and customer “I will advertise the ability to get anywhere” Often some combination of default and individual routes “Full” routes can be gotten from any major provider, but may be inefficient routes. Relatively inexpensive to service Packets often handed to next hop network quickly, Packets only sometimes spend time in my network However, transit contracts produce revenue

Components of agreements Contracts always under NDA Therefore little direct knowledge outside key players Key components Routes advertised Ability to advertise routes Assigned Prefix (Enterprise) Multihoming Applied bandwidth Load threshold at which bandwidth is increased Delay and loss rates acceptable Uptime requirements Cost of service Flat Rate or Usage Pricing

Queuing Theory and QoS Mean queue depth, and therefore delay Nominal Delay and Jitter Greater Delay, Jitter, and Loss Link utilization

Key issues is supporting SLA Fundamentally, the issue is Bandwidth and Reachability

Key problems in global routing Asymmetric Routes resulting from differences in policy Convergence issues resulting from Differences in policy Algorithms and parameters in routing

Structure of the Internet Fred Baker