Splash Screen.

Slides:



Advertisements
Similar presentations
9-3 Rotations You identified rotations and verified them as congruence transformations. Draw rotations. Draw rotations in the coordinate plane.
Advertisements

Concept. Example 1 Draw a Rotation Use a protractor to measure a 45° angle counterclockwise with as one side. Extend the other side to be longer than.
S ECTION 9.3 Rotations. In Lesson 4.7, you learned that a rotation or turn moves every point of a preimage through a specified angle and direction about.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 9–2) Then/Now New Vocabulary Key Concept: Rotation Example 1:Draw a Rotation Key Concept: Rotations.
CCSS Content Standards G.CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 4–6) CCSS Then/Now New Vocabulary Key Concept: Reflections, Translations, and Rotations Example.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 4–7) CCSS Then/Now New Vocabulary Example 1:Position and Label a Triangle Key Concept: Placing.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 9–3) NGSSS Then/Now New Vocabulary Key Concept: Glide Reflection Example 1: Graph a Glide Reflection.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 9–3) CCSS Then/Now New Vocabulary Key Concept: Glide Reflection Example 1: Graph a Glide Reflection.
Geometry My great concern is not whether you have failed, but whether you are content with your failure. Abraham Lincoln Today:  Vocab Check Up  9.1/9.3.
G.CO.1 Know precise definitions of angle, circle, perpendicular lines, parallel lines, and line segment, based on the undefined notions of point, line,
Rotations Rotations Rotations Rotations Rotations Rotations Rotations
1.2: Transformations G-CO.6 Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 9–5) CCSS Then/Now Key Concept: Dilation Example 1:Draw a Dilation Example 2:Real-World Example:
Splash Screen. Lesson Menu Five-Minute Check (over Chapter 8) CCSS Then/Now New Vocabulary Key Concept: Reflection in a Line Example 1: Reflect a Figure.
Rotations Advanced Geometry Rigid Transformations Lesson 3.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 4–6) CCSS Then/Now New Vocabulary Key Concept: Reflections, Translations, and Rotations Example.
Lesson 9-3 Rotations or Turns. 5-Minute Check on Lesson 9-2 Transparency 9-3 Click the mouse button or press the Space Bar to display the answers. Find.
1.2: Transformations CCSS
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 9–5) CCSS Then/Now Key Concept: Dilation Example 1:Draw a Dilation Example 2:Real-World Example:
Number of Instructional Days: 13.  Standards: Congruence G-CO  Experiment with transformations in the plane  G-CO.2Represent transformations in the.
Activation—Unit 5 Day 1 August 5 th, 2013 Draw a coordinate plane and answer the following: 1. What are the new coordinates if (2,2) moves right 3 units?
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 9–2) CCSS Then/Now New Vocabulary Key Concept: Rotation Example 1:Draw a Rotation Key Concept:
DILATIONS Content Standards G.CO.2 Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as.
Compositions of Transformations LESSON 9–4. Lesson Menu Five-Minute Check (over Lesson 9–3) TEKS Then/Now New Vocabulary Key Concept: Glide Reflection.
Splash Screen.
LESSON 9–3 Rotations.
Splash Screen.
Warm-Up Reflect triangle ABC across the line y = 1 given A(0,3) , B(-1, 5) , and C(-4, 2). List the coordinates of the image: A’( , ) B’( , ) C’( , ) Put.
Splash Screen.
Key Concept: Reflections, Translations, and Rotations
Splash Screen.
Mathematical Practices 2 Reason abstractly and quantitatively.
Translations 9.2 Content Standards
9.3 Rotations Then: You identified rotations and verified them as congruence transformations. Now: You will draw rotations in the coordinate plane.
Splash Screen.
Splash Screen.
Splash Screen.
Rotations Rotations Rotations Rotations Rotations Rotations Rotations
Splash Screen.
Splash Screen.
I can draw rotations in the coordinate plane.
Starter(s) Find the coordinates of the figure under the given translation. RS with endpoints R(1, –3) and S(–3, 2) along the translation vector 2, –1
LESSON 9–3 Rotations.
Mathematical Practices 5 Use appropriate tools strategically.
Students will be able to find midpoint of a segment
Section 9-1 Reflections.
A circular dial with the digits 0 through 9 evenly spaced around its edge can be rotated clockwise 36°. How many times would you have to perform this.
Identify reflections, translations, and rotations.
Splash Screen.
Splash Screen.
Lesson 9.3 Rotations Key Terms
True or False: A transformation is an operation that maps a an image onto a pre-image. Problem of the Day.
Starter(s) The coordinates of quadrilateral ABCD before and after a rotation about the origin are shown in the table. Find the angle of rotation. A. 90°
Splash Screen.
Five-Minute Check (over Lesson 9–1) CCSS Then/Now New Vocabulary
Splash Screen.
Congruence Transformations
Splash Screen.
True or False: Given A(-4, 8), the image after a translation of (x – 7, y + 6) is A’(-11, 14). Problem of the Day.
Splash Screen.
Splash Screen.
Five-Minute Check (over Lesson 3–2) Mathematical Practices Then/Now
Five-Minute Check (over Lesson 3–4) Mathematical Practices Then/Now
9-3 Rotations.
Five-Minute Check (over Lesson 6) Mathematical Practices Then/Now
Five-Minute Check (over Lesson 3–1) Mathematical Practices Then/Now
Five-Minute Check (over Lesson 1–6) Mathematical Practices Then/Now
Five-Minute Check (over Chapter 2) Mathematical Practices Then/Now
Five-Minute Check (over Lesson 4–6) Then/Now New Vocabulary
Presentation transcript:

Splash Screen

Five-Minute Check (over Lesson 9–2) CCSS Then/Now New Vocabulary Key Concept: Rotation Example 1: Draw a Rotation Key Concept: Rotations in the Coordinate Plane Example 2: Rotations in the Coordinate Plane Example 3: Standardized Test Example: Rotations in the Coordinate Plane Lesson Menu

Find the coordinates of the figure under the given translation Find the coordinates of the figure under the given translation. RS with endpoints R(1, –3) and S(–3, 2) along the translation vector 2, –1 ___ A. R'(–2, –2), S'(–1, 1) B. R'(0, –3), S'(–5, 3) C. R'(3, –4), S'(–1, 1) D. R'(3, –4), S'(–5, 3) 5-Minute Check 1

Find the coordinates of the figure under the given translation Find the coordinates of the figure under the given translation. ΔABC with vertices A(–4, 3), B(–2, 1), and C(0, 5) under the translation (x, y) → (x + 3, y – 4) A. A'(–2, 1), B'(1, –3), C'(3, –1) B. A'(–1, –1), B'(1, –3), C'(3, 1) C. A'(0, 5), B'(–6, 3), C'(4, 7) D. A'(1, –1), B'(2, 5), C'(5, 9) 5-Minute Check 2

Find the coordinates of the figure under the given translation Find the coordinates of the figure under the given translation. trapezoid LMNO with vertices L(2, 1), M(5, 1), N(1, –5) and O(0, –2) under the translation (x, y) → (x – 1, y + 4) A. L'(1, 5), M'(4, 5), N'(0, –1), O'(–1, 2) B. L'(2, 6), M'(5, 7), N'(1, 0), O'(0, 3) C. L'(3, –3), M'(6, –2), N'(0, –8), O'(–1, –6) D. L'(4, –4), M'(7, 5), N'(0, –1), O'(1, 4) 5-Minute Check 3

Find the translation that moves AB with endpoints A(2, 4) and B(–1, –3) to A'B' with endpoints A'(5, 2) and B'(2, –5). ___ ____ A. (x – 2, y – 3) B. (x + 2, y + 2) C. (x – 3, y + 2) D. (x + 3, y – 2) 5-Minute Check 4

The preimage of rectangle ABCD has vertices at A(–4, 5), B(–4, –3), C(1, –3), and D(1, 5). Its image has vertices at A'(–1, 3), B'(–1, –5), C'(4, –5), and D'(4, 3). Write the ordered pair that describes the transformation of the rectangle. A. (x, y) → (x + 3, y – 2) B. (x, y) → (x – 3, y + 2) C. (x, y) → (x + 2, y + 3) D. (x, y) → (x – 2, y – 3) 5-Minute Check 5

Mathematical Practices 2 Reason abstractly and quantitatively. Content Standards G.CO.4 Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments. G.CO.5 Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another. Mathematical Practices 2 Reason abstractly and quantitatively. 5 Use appropriate tools strategically. CCSS

Draw rotations in the coordinate plane. You identified rotations and verified them as congruence transformations. Draw rotations. Draw rotations in the coordinate plane. Then/Now

center of rotation angle of rotation Vocabulary

Concept

Rotate quadrilateral RSTV 45° counterclockwise about point A. Draw a Rotation Rotate quadrilateral RSTV 45° counterclockwise about point A. Draw a segment from point R to point A. Use a protractor to measure a 45° angle counterclockwise with as one side. Extend the other side to be longer than AR. Locate point R' so that AR = AR'. Repeat this process for points S, T, and V. Connect the four points to form R'S'T'V'. Example 1

Draw a Rotation Quadrilateral R'S'T'V' is the image of quadrilateral RSTV under a 45° counterclockwise rotation about point A. Answer: Example 1

For the diagram, which description best identifies the rotation of triangle ABC around point Q? A. 20° clockwise B. 20° counterclockwise C. 90° clockwise D. 90° counterclockwise Example 1

Concept

First, draw ΔDEF and plot point G. Rotations in the Coordinate Plane Triangle DEF has vertices D(–2, –1), E(–1, 1), and F(1, –1). Graph ΔDEF and its image after a rotation of 115° clockwise about the point G(–4, –2). First, draw ΔDEF and plot point G. Draw a segment from point G to point D. Use a protractor to measure a 115° angle clockwise with as one side. Draw Use a compass to copy onto Name the segment Repeat with points E and F. Example 2

Rotations in the Coordinate Plane Answer: ΔD'E'F' is the image of ΔDEF under a 115° clockwise rotation about point G. Example 2

Triangle ABC has vertices A(1, –2), B(4, –6), and C(1, –6) Triangle ABC has vertices A(1, –2), B(4, –6), and C(1, –6). Draw the image of ΔABC under a rotation of 70° counterclockwise about the point M(–1, –1). A. B. C. D. Example 2

Rotations in the Coordinate Plane Hexagon DGJTSR is shown below. What is the image of point T after a 90 counterclockwise rotation about the origin? A (5, –3) B (–5, –3) C (–3, 5) D (3, –5) Example 3

Answer: The answer is C, (–3, 5). Rotations in the Coordinate Plane Read the Test Item You are given a graph of hexagon DGJTSR and asked to identify the coordinates of the image of point T after a 90° counterclockwise rotation about the origin. Solve the Test Item To find the coordinates of point T after a 90 counterclockwise rotation about the origin, multiply the y-coordinate by –1 and then interchange the x- and y-coordinates. (x, y) → (–y, x) (5, 3) → (–3, 5) Answer: The answer is C, (–3, 5). Example 3

Triangle PQR is shown below Triangle PQR is shown below. What is the image of point Q after a 90° counterclockwise rotation about the origin? A. (–5, –4) B. (–5, 4) C. (5, 4) D. (4, –5) Example 3

End of the Lesson