Improved Immobilization of Chiral Bisoxazolines on Silica: Application to Circulating Flow-Type Pack Bed Reactor Su Seong Lee, Jaehong Lim, Jackie Y. Ying Institute of Bioengineering and Nanotechnology Singapore The 12th Annual Green Chemistry and Engineering Conference (June 24-26, 2008) Washington, DC
Chiral Bisoxazoline Ligands Privileged chiral catalyst Yoon, T. P. & Jacobsen, E. N. Science 299,1691, 2003 R1 R2 R1 R2 R3 R2 R2 Cyclopropanation Ene-Reactions Diels-Alder Reactions Allylic substitution Aziridination reactions Mukaiyama Aldol Reactions Enantioselective Henry reaction Enantioselective conjugate addition of carbamates (synthesis of β-amino acids)
Causes of the low enantioselectivities? Silica-Supported Chiral Bisoxazoline Cyclopropanation of styrene < 30% ee Causes of the low enantioselectivities? < 65% ee J. Org. Chem., 66 (26), 8893, 2001 Silica < 55% ee Grafting on MCM Chem. Commun. 1936, 2001
Spherical MCF Microparticles as a Silica Support Spherical, micron-sized MCF particles Packed beds for catalysis and separations Conventional MCF Conventional MCF Advantages Large pore size more than 20 nm No diffusion problem Easy control of the pore size Excellent mechanical strength Easy isolation of catalysts Higher activity Easy control of catalyst microenvironment MCF = mesocellular siliceous foam Conventional MCF More efficient packed bed reactor Spherical MCF
Asymmetric cyclopropanation of styrene Interaction of Bisoxazoline with Silica Surface MCF or TMS-capped MCF MCF + AzatBBOX:Cu(II) A C PhNHNH2 Stirring, CH2Cl2 TMS-MCF + AzatBBOX:Cu(II) B D Asymmetric cyclopropanation of styrene + N2CH2CO2Et A B Catalyst Run Yield (%) Trans:Cis Trans (ee%) Cis (ee%) C 1 73 64:36 78 66 2 67 66:34 82 72 D 74:26 91 87 71:29 86 81 After two runs Adv. Synth. Catal. 350, 1295, 2008
Asymmetric cyclopropanation of styrene Influence of Postcapping M C F M C F (HMDS) Asymmetric cyclopropanation of styrene % ee (for trans isomer) 76 84 Trans/cis ratio 57/43 60/40 Chem. Commun. 3577, 2005 65% ee 71% ee 81% ee Amount of TMS capping Org. Lett. 3, 2493, 2001
Influence of Precapping M C F M C F M C F HMDS + Cu(I) B HMDS toluene Cu(I) Vapor-phase grafting Pre-capping A Post-capping M C F M C F + HMDS M C F Cu(I) C Asymmetric cyclopropanation of styrene Catalyst % Yield Trans/Cis % ee trans % ee cis H 80 68/32 86 84 A 70 59/41 82 79 B 73 64/36 90 87 H C 80 65/35 95 92 Adv. Synth. Catal. 348, 1248, 2006
Asymmetric cyclopropanation of styrene Influence of Precapping MCF Bare MCF Post-capping Cu(I) TMS(0.8)-MCF Pr-1 Post-capping Cu(I) Cu(I) MCF Bare MCF MCF HOMO-Me Pr-2 Pr-3 Asymmetric cyclopropanation of styrene Catalyst Loading (mmolg-1) Run# % Yield Trans:Cis % ee trans % ee cis HOMO-Me 80 71:29 91 87 Pr-1 0.240 1 69 63:37 37 27 2 67 32 Pr-2 0.262 88 83 81 Pr-3 0.066 75 62:38 86 78 Adv. Synth. Catal. 350, 1295, 2008
Fabrication of Immobilized Catalysts Complexation Immobilization Post-capping Pre-capping Cu+ : Si-OH : Si-OTMS : Si-O L
Asymmetric cyclopropanation of styrene Influence of Linker Group TMS(0.8)-MCF Post-capping MCF MP MCF Pr-3 HOMO-MP Asymmetric cyclopropanation of styrene Catalyst Loading amount (mmol/g) Run# Yield (%) Trans:Cis Trans ee% Cis Pr-2 0.120 1 68 70:30 64 2 40 67:33 38 MP 0.148 55 72:28 84 80 58 88 Pr-3 0.066 75 62:38 86 78 HOMO-MP 82 74:26 93 90 Adv. Synth. Catal. 350, 1295, 2008
Blank test by mixing of MCF with Cu(OTf)2 (no ligand) Support = 100 mg, Cu(OTf)2 = 3.6 mg (0.01 mmol) Catalyst Run # Styrene/EDA Yield (%) Trans:Cis MCF:Cu(I) 1 1.5 58 57:43 TMS(0.8)-MCF:Cu(I) 35 63:37 2 53 3 49 67:33 Silanol or siloxane-coordinated cooper can give cyclopropanation products Incomplete complexation Low enantioselectivity Adv. Synth. Catal. 350, 1295, 2008
Influence of Catalyst Loading Amount Loading amount (mmol/g) 0.120 0.262 Trans ee (%) 68 (40)a 88 (91)a Cis ee (%) 64 (38)a 83 (87)a Pr MCF a result from the 2nd run Loading amount (mmol/g) 0.148 0.245 Trans ee (%) 84 93 Cis ee (%) 80 91 MP MCF Catalyst Loading amount (mmol/g) Reaction time (min) Run# Yield (%) Trans/Cis Trans ee% Cis MP 0.507 420 1 81 69/31 94 90 2 77 68/32 180 61 70/30 93 91 63 0.245 75 82 72/28 83 35 4 79 5 Adv. Synth. Catal. 350, 1295, 2008
Packed Bed Reactor Continuous flow reaction Circulating flow reaction Circulating at a high flow rate (5 ml/min) N2 mix Flow rate: 0.2 ml/min MCF Packed Bed Reactor (50 mm 4.6 mm I.D.) Adv. Synth. Catal. 350, 1295, 2008
Circulating Flow-Type Reactor Conditions Reactor = 50 mm x 4.6 mm, Catalyst ~ 240 mg (0.03 mmol) Flow rate = 5.0 ml/min Reaction time per cycle = 75 min Turn over number (TON) per cycle = 100 Total TON = 2000 (20 cycles) Decrease the amount of the reaction medium Trans ee Yield Trans ratio Adv. Synth. Catal. 350, 1295, 2008
Synthesis of Useful Chiral Ingredient + * Cilastatin (dehydropeptidase) MCF Run # Catalyst (mol%) % Yield % ee 1 0.1 90 92 2 Adv. Synth. Catal. 348, 1248, 2006 Run # Catalyst (mol%) % Yield % ee 1a 0.1 90 92 2a 86c 3a 91 4b 5b MCF a Dripping of EDA for 5 hr at 0C and then warm to RT over 14 hr b Dripping of EDA for 5 hr at 5C, stirring at 10C for 90 min, and then warm to RT over 30 min c Overall yield from run #2-5 Adv. Synth. Catal. 350, 1295, 2008
Summary Selectivity and recyclability of silica-supported chiral bisoxazoline-copper(I) were greatly improved by pre-capping, post-capping and a rigid linker group Circulating flow-type reaction system was developed for gas-generating catalytic reactions
Acknowledgments Dr. Jaehong Lim, Dr Han Yu, Ms. Siti Nurhanna Riduan Members of the Nanobiotechnology Group IBN Staff Facilities and Administration Staff IBN, BMRC and A*STAR