Neutrino Masses and Flavor Mixing H. Fritzsch.

Slides:



Advertisements
Similar presentations
LRP2010 WG5 Fundamental Interactions Nathal Severijns ( K.U.Leuven) for WG5 Scoping workshop Frankfurt, October th 2009.
Advertisements

Oscillation formalism
Neutrino physics using Nuclear Reactors J. Magnin Centro Brasileiro de Pesquisas Físicas Rio de Janeiro - Brazil.
Neutrinos Beck Róbert Fizikus MSc II. ELTE TTK.
Neutrino Masses, Leptogenesis and Beyond The Incredible Foresight of ETTORE MAJORANA Haim Harari Erice, August 31, 2006.
Recent Discoveries in Neutrino Physics: Understanding Neutrino Oscillations 2-3 neutrino detectors with variable baseline 1500 ft nuclear reactor Determining.
 Rafael Sierra. 1) A short review of the basic information about neutrinos. 2) Some of the history behind neutrinos and neutrino oscillations. 3) The.
Higgs Quadruplet for Type III Seesaw and Implications for → e and −e Conversion Ren Bo Coauther : Koji Tsumura, Xiao - Gang He arXiv:
Alpha decay Beta decay Henri Bequerel Pierre and Marie Curie.
Status of Neutrino Science Hitoshi Murayama LBNLnu April 11, 2003.
G. Sullivan - Princeton - Mar 2002 What Have We Learned from Super-K? –Before Super-K –SK-I ( ) Atmospheric Solar –SNO & SK-I Active solar –SK.
Neutrino Mass and Mixing David Sinclair Carleton University PIC2004.
Probing Majorana Neutrinos in Rare Meson Decays Claudio Dib UTFSM I.S. & B.K. Fest, UTFSM, May 2010 G. Cvetic, C.D., S.K. Kang, C.S. Kim, PRD 82, ,
Fermion Masses and Unification Lecture I Fermion Masses and Mixings Lecture II Unification Lecture III Family Symmetry and Unification Lecture IV SU(3),
Models of Neutrino Mass G.G.Ross, IPPP December 2005 Origin of mass and mass hierarchy What do we learn from the mixing angles?
Neutrino Physics Steve Elliott LANL Nuclear Physics Summer School 2005.
Atmospheric Neutrino Anomaly
1962 Lederman,Schwartz,Steinberger Brookhaven National Laboratory using a   as a source of  antineutrinos and a 44-foot thick stack of steel (from a.
1 The elusive neutrino Piet Mulders Vrije Universiteit Amsterdam Fysica 2002 Groningen.
Neutrino Oscillations Or how we know most of what we know.
Aug 29-31, 2005M. Jezabek1 Generation of Quark and Lepton Masses in the Standard Model International WE Heraeus Summer School on Flavour Physics and CP.
Neutrino Masses, Leptogenesis and Beyond The Incredible Foresight of ETTORE MAJORANA Haim Harari Erice, August 2006.
NEUTRINO PROPERTIES J.Bouchez CEA-Saclay Eurisol town meeting Orsay, 13/5/2003.
Isospin, a quantum number, is indicated by I (sometimes by T), is related to the number of electrically charged states (N) of a meson or a baryon, and.
Neutrino Oscillation Nguyen Thanh Phong Yonsei Univ., May 19, 2008.
Particle Physics Probes Messengers of the Universe J. Brunner.
NEUTRINO MASS AND THE LHC Ray Volkas School of Physics The University of Melbourne CoEPP Workshop, Cairns, July
Neutrino oscillation physics Alberto Gago PUCP CTEQ-FERMILAB School 2012 Lima, Perú - PUCP.
G G G Fermion Masses: Arbitrary L R Quark Masses: Observed: Observed: m(c) : m(t) = m(u):m(c) m(c) : m(t) = m(u):m(c) 1/207 1/207 1/207 1/207.
Neutrino properties, oscillations, present status Gaston Wilquet IIHE - Université Libre de Bruxelles 1 Urs Fest, Bern, 21/1/2011.
J. Goodman – January 03 The Solution to the Solar Problem Jordan A. Goodman University of Maryland January 2003 Solar Neutrinos MSW Oscillations Super-K.
Neutrinos: What we’ve learned and what we still want to find out Jessica Clayton Astronomy Club November 10, 2008.
Physics of sin 2 2θ 13 ★ What is θ 13 ? ★ What does sin 2 2θ 13 mean? sin 2 2θ 13 measures the oscillation amplitude of reactor neutrinos, e.g., at Daya.
weak decays beta decay ofneutron problem energy and momentum not conserved e n p.
Geometric -Mass Hierarchy & Leptogenesis Zhi-zhong Xing (IHEP, Beijing)  A Conjecture + An Ansatz  Seesaw + Leptogenesis  -Mixing + Baryogenesis Z.Z.X.,
Wednesday, Jan. 15, 2003PHYS 5396, Spring 2003 Jae Yu 1 PHYS 5396 – Lecture #2 Wednesday, Jan. 15, 2003 Dr. Jae Yu 1.What is a neutrino? 2.History of neutrinos.
Outline of lectures: 1)Status of the field: What we know for sure and what we should try to find out in near future? 2) Is the total lepton number conserved?
SUSY GUT Predictions for Neutrino Oscillation Mu-Chun Chen Brookhaven National Laboratory DUSEL Workshop, January 4-7, 2005 University of Colorado at Boulder.
Solar Neutrinos By Wendi Wampler. What are Neutrinos? Neutrinos are chargeless, nearly massless particles Neutrinos are chargeless, nearly massless particles.
THE CONNECTION BETWEEN NEUTRINO EXPERIMENTS AND LEPTOGENESIS Alicia Broncano Berrocal MPI.
Neutrino physics: The future Gabriela Barenboim TAU04.
1 A.Zalewska, Epiphany 2006 Introduction Agnieszka Zalewska Epiphany Conference on Neutrinos and Dark Matter, Epiphany Conference on Neutrinos.
Beta Decay history left-handed or right-handed? Four-fermion
Grand Unification and Neutrino Masses
Pontecorvo’s idea An introductory course on neutrino physics (IV)
Neutrino Masses and Flavor Mixing H. Fritzsch LMU Munich.
A New Family Symmetry: Discrete Quaternion Group
Neutrino Oscillations and T2K
Non-unitary deviation from the tri-bimaximal mixing and neutrino oscillations Shu Luo The Summer Topical Seminar on Frontier of Particle Physics.
Flavor Mixing of quarks.
Neutrinos and the Evolution
SU(3) Gauge Family Model for Neutrino Mixing and Masses
The Physics of Neutrinos
PHYS 5326 – Lecture #1 Class specifications and plans
Neutrino oscillations with the T2K experiment
Solar Neutrino Problem
Neutrino Masses, Leptogenesis and Beyond
Maarten de Jong Nikhef & Leiden University
Pauli´s new particle * nt nm ne e m t Beta-Decay Pa 234 b (electron)
Quark and lepton masses
Determining the absolute masses of neutrinos
Neutrino oscillation physics
Future neutrino experiments
Natural expectations for…
Neutrino Masses and Mixings
Neutrino Oscillations
Testing Seesaw at LHC 郑亚娟.
Neutrino Mass Bounds from Onbb Decays and Large Scale Structures
1930: Energy conservation violated in β-decay
Weak interactions.
Presentation transcript:

Neutrino Masses and Flavor Mixing H. Fritzsch

momentum - energy not conserved!

W. Pauli 1930 „Neutron“

electron

Savannah river reactor 1956: discovery of the neutrino Savannah river reactor

(Fred Reines – Clyde Cowan)

n-capture by cadmium

Standard Model I

Standard Model neutrinos massless no mixing of neutrinos

electroweak gauge group SU(2,L) x SU(2,R) x U(1) neutrino masses

===> Grand Unification SU(2,L) x SU(2,R)

SU(3) x SU(2) x U(1) SU(4) x SU(2) x SU(2) ~ SO(6) x SO(4) =>SO(10) Fritzsch / Minkowski - 1975

Bruno Pontecorvo 1913 - 1993

neutrino mixing

(1957) (1976) Physics Letters 62B, 76 B. Pontecorvo Phys. JETP 6, 429 H. Fritzsch - P. Minkowski Physics Letters 62B, 76 (1976)

neutrino oscillations A neutrino is produced with a certain momentum. The different mass eigenstates propagate with different velocities, less than the speed of light. neutrino neutrino oscillations

neutrino oscillation

only mass differences enter

Sun

1963 Calculation of solar flux John Bahcall

1965 => Homestake Goldmine SouthDakota

solar neutrino deficit observed: 0.5 neutrinos / day expected: 1.5 neutrinos / day observed: 0.5 neutrinos / day solar neutrino deficit

Kamioka

speziell gegen dem Ende zu. Kamiokande Kamioka Nucleon Decay Experiment Ewigkeit ist lang, speziell gegen dem Ende zu. W.A.

40 m

2001 => Kanada Sudbury Neutrino Obervatory SNO

SNO: neutral current ( no oscillations )

flavor mixing - quarks CKM - matrix

observed CKM - matrix

weak transitions and weak mixing

:H. Fritzsch – Z. Xing

flavor mixing angles - fermion masses

- - III 2 families flavor mixing II I

mass matrices: texture 0 u,c - d,s H. Fritzsch S. Weinberg 1978

mixing angles <=> masses - mixing angles <=> masses

Cabibbo angle

Cabibbo angle ==>

- 3 families III flavor mixing II I

- texture zeros

-

-

-

- unitarity triangle

Cabibbo angle  unitarity triangle (rectangular)

-

- LHCb:

- Maximal CP-violation

relations between quark masses ? Observed: m(c) : m(t) = m(u):m(c) 1/207 1/207 m(s):m(b) = m(d):m(s) 1/23 1/23

ln m

QED-corrections

neutrino mixing matrix (==> CKM Matrix)

V = U P Fritzsch - Xing

n Kamiokande - SNO

3 texture zeros

Observed ==>

observation weak mass hierarchy

==> neutrino masses

0.05 eV - 0.01 eV 0.01 eV - 0.004 eV -

m(1) = ( 0.0040 +/- 0.001 ) eV m(2) = ( 0.0096 +/- 0.002 )eV m(3) = ( 0.049 eV +/- 0-007 ) eV normal mass hierarchy

masses (relative)

normal spectrum inverted spectrum

weak mass hierarchy for neutrinos  large mixing angles

Neutrino Mixing Matrix ???

ln m

ln m ?

radiative corrections

ln m

-muon and tauon mass- only small changes by radiative corrections

ln m

-

Daya Bay

Daya Bay

Daya Bay

Daya Bay

observed CKM - matrix

mixing of leptons

???????? ??????? neutrino masses very small

Dirac mass ? Majorana mass ?

Dirac mass Majorana mass

Superposition of Dirac mass and Majorana mass: See-Saw Mechanism D: Dirac mass M: Majorana mass

History Seesaw T. Yanagida 1979 Footnote: H. Fritzsch, M. Gell-Mann, P. Minkowski, PLB 59 (1975) 256 T. Yanagida 1979 M. Gell-Mann, P. Ramond, R. Slansky 1979

neutrino = antineutrino Majorana masses no fermion number neutrino = antineutrino

decay ~ Majorana mass term

Gran Sasso Laboratory

Cuoricino 130Te

Majorana neutrino mass < 0.23 ev

relevant mass term: expected: factor 15 improvement !?

maximal CP-violation

===> reactor neutrinos maximal CP – violation (leptons) ===> reactor neutrinos

Conclusions neutrinos: m very small: m<0.1 eV

neutrino oscillations le lepton flavor mixing neutrino oscillations (large mixing angles)

3 texture zeros

m(1): ~ 0.004 eV m(2): ~ 0.01 eV m(3): ~ 0.05 eV

Dirac mass ? Majorana mass ?

double beta decay Cuoricino Experiment m< 0.23 eV expected: 0.02 eV