Neutrino Masses and Flavor Mixing H. Fritzsch
momentum - energy not conserved!
W. Pauli 1930 „Neutron“
electron
Savannah river reactor 1956: discovery of the neutrino Savannah river reactor
(Fred Reines – Clyde Cowan)
n-capture by cadmium
Standard Model I
Standard Model neutrinos massless no mixing of neutrinos
electroweak gauge group SU(2,L) x SU(2,R) x U(1) neutrino masses
===> Grand Unification SU(2,L) x SU(2,R)
SU(3) x SU(2) x U(1) SU(4) x SU(2) x SU(2) ~ SO(6) x SO(4) =>SO(10) Fritzsch / Minkowski - 1975
Bruno Pontecorvo 1913 - 1993
neutrino mixing
(1957) (1976) Physics Letters 62B, 76 B. Pontecorvo Phys. JETP 6, 429 H. Fritzsch - P. Minkowski Physics Letters 62B, 76 (1976)
neutrino oscillations A neutrino is produced with a certain momentum. The different mass eigenstates propagate with different velocities, less than the speed of light. neutrino neutrino oscillations
neutrino oscillation
only mass differences enter
Sun
1963 Calculation of solar flux John Bahcall
1965 => Homestake Goldmine SouthDakota
solar neutrino deficit observed: 0.5 neutrinos / day expected: 1.5 neutrinos / day observed: 0.5 neutrinos / day solar neutrino deficit
Kamioka
speziell gegen dem Ende zu. Kamiokande Kamioka Nucleon Decay Experiment Ewigkeit ist lang, speziell gegen dem Ende zu. W.A.
40 m
2001 => Kanada Sudbury Neutrino Obervatory SNO
SNO: neutral current ( no oscillations )
flavor mixing - quarks CKM - matrix
observed CKM - matrix
weak transitions and weak mixing
:H. Fritzsch – Z. Xing
flavor mixing angles - fermion masses
- - III 2 families flavor mixing II I
mass matrices: texture 0 u,c - d,s H. Fritzsch S. Weinberg 1978
mixing angles <=> masses - mixing angles <=> masses
Cabibbo angle
Cabibbo angle ==>
- 3 families III flavor mixing II I
- texture zeros
-
-
-
- unitarity triangle
Cabibbo angle unitarity triangle (rectangular)
-
- LHCb:
- Maximal CP-violation
relations between quark masses ? Observed: m(c) : m(t) = m(u):m(c) 1/207 1/207 m(s):m(b) = m(d):m(s) 1/23 1/23
ln m
QED-corrections
neutrino mixing matrix (==> CKM Matrix)
V = U P Fritzsch - Xing
n Kamiokande - SNO
3 texture zeros
Observed ==>
observation weak mass hierarchy
==> neutrino masses
0.05 eV - 0.01 eV 0.01 eV - 0.004 eV -
m(1) = ( 0.0040 +/- 0.001 ) eV m(2) = ( 0.0096 +/- 0.002 )eV m(3) = ( 0.049 eV +/- 0-007 ) eV normal mass hierarchy
masses (relative)
normal spectrum inverted spectrum
weak mass hierarchy for neutrinos large mixing angles
Neutrino Mixing Matrix ???
ln m
ln m ?
radiative corrections
ln m
-muon and tauon mass- only small changes by radiative corrections
ln m
-
Daya Bay
Daya Bay
Daya Bay
Daya Bay
observed CKM - matrix
mixing of leptons
???????? ??????? neutrino masses very small
Dirac mass ? Majorana mass ?
Dirac mass Majorana mass
Superposition of Dirac mass and Majorana mass: See-Saw Mechanism D: Dirac mass M: Majorana mass
History Seesaw T. Yanagida 1979 Footnote: H. Fritzsch, M. Gell-Mann, P. Minkowski, PLB 59 (1975) 256 T. Yanagida 1979 M. Gell-Mann, P. Ramond, R. Slansky 1979
neutrino = antineutrino Majorana masses no fermion number neutrino = antineutrino
decay ~ Majorana mass term
Gran Sasso Laboratory
Cuoricino 130Te
Majorana neutrino mass < 0.23 ev
relevant mass term: expected: factor 15 improvement !?
maximal CP-violation
===> reactor neutrinos maximal CP – violation (leptons) ===> reactor neutrinos
Conclusions neutrinos: m very small: m<0.1 eV
neutrino oscillations le lepton flavor mixing neutrino oscillations (large mixing angles)
3 texture zeros
m(1): ~ 0.004 eV m(2): ~ 0.01 eV m(3): ~ 0.05 eV
Dirac mass ? Majorana mass ?
double beta decay Cuoricino Experiment m< 0.23 eV expected: 0.02 eV