10.4 Length of an Arc and Area of a Sector

Slides:



Advertisements
Similar presentations
EteMS KHOO SIEW YUEN SMK.HI-TECH 2005.
Advertisements

AREA AND CIRCUMFERENCE OF A CIRCLE. diameter radius circumference The perimeter of a circle is called the circumference (C). The diameter (d) of a circle.
Objective: find the area of geometric figures and shaded regions. What area formulas must be memorized?
Final Exam Rooms: Wednesday, June 10, :30 – 9:00 am.
C2: Arcs, Sectors and Segments
© T Madas.
CIRCLE THEOREMS. TANGENTS A straight line can intersect a circle in three possible ways. It can be: A DIAMETERA CHORD A TANGENT 2 points of intersection.
11.6 Arc Lengths and Areas of Sectors
Circles - A reminder.
EXAMPLE 3 Use the Area of a Sector Theorem Use the diagram to find the area of V. SOLUTION Area of sector TVU = Area of V m TU 360 ° Write formula for.
Vocabulary: SECTOR of a circle: a region bounded by an arc of the circle and the two radii to the arc’s endpoints SEGMENT of a circle: a part of a circle.
Areas of Circles and Sectors 11.5 California State Standards 8: Solve problems involving perimeter and area. 19: Use trigonometric functions 21: Prove.
Circles. Circumferences of Circles diameter (d) O circumference (C) The circumference (C) and the diameter (d) of a circle are related by radius (r) Since.
Warm up for Section 4.8.
Geometry Review AREA 1. Find the measure of each interior angle of the regular polygon shown below. 2.
Starter The perimeter of this sector is (2r + 12∏) m. Find the radius r m, of the sector. r m.
1.7 - Find Perimeter, Circumference, and Area. Perimeter: Length around a shape. Measured in u cm, in, ft, yd.
© T Madas. Find the mean percentage mark of 37%, 42%, 68%, 55% and 39%. Find of Find 7% of 675. Find the area of a triangle with base of 1.25.
Circles…… Area and Circumference The Circumference of a Circle Find the circumference of the following circles. C =  d C = 2  r 8 cm cm 2 C =
The figure is composed of a right triangle and a semi-circle. What is the area of the shaded region? The figure is not drawn to scale. 7 in 24 in.
Pythagorean Theorem, Perimeter, Circumference, Area ….
 SAT Reasoning: Circles By: Saif Ali AlYamahi Grade:
8th Grade Math Chapter 9a Review
12 Area and Volume (II) 12.1 Circumferences and Areas of Circles
Circular Cones.
Solve Problems Involving the Circumference and Area of Circles
Lesson 10-3 Arcs and Chords.
Find the area of a circle with the given measure.
Practice Quiz Circles.
C2 TRIGONOMETRY.
Find the area of the triangle. POLYGONS Find the area of the triangle.
9.4 Points, Lines and Planes of Solids
11.6 Arc Lengths and Areas of Sectors
Additional Example 3 Additional Example 4
11.3 Areas of Circles and Sectors
9.3 Rectangles, Rhombuses and Squares
16. Find the value of x. x○ 170○.
Lesson 8-4: Arcs and Chords
9.4 Composite Figures A composite figure is formed from two or more figures. To find the area of a composite figure: Find the areas of each figure then.
10-3: Arcs and Chords.
Perimeter of combined figures
CIRCLE.
How to obtain the value of  ? Method 1
AREAS OF CIRCLES AND SECTORS
Choose a shape and write down everything you know about it.
Arc Lengths and Areas of Sectors
Semicircle application
Questions over hw?.
Lesson 8-4: Arcs and Chords
Quadrant.
Questions over hw?.
Semicircle basics.
Year 11 Mini-Assessment 12 FOUNDATION Perimeter, Area, Volume.
Areas of Circles and Sectors
Lesson 10-3: Arcs and Chords
Spheres.
What fraction of the whole circle is this sector?
On your whiteboards The radius of this circle is 30 cm What is the circumference of this circle in terms of pi? Show your calculation. Compare and.
Copyright © Cengage Learning. All rights reserved.
Parallelograms, Triangles, Rhombuses Rectangles & Trapezoids Regular
Lesson 8-4: Arcs and Chords
11.5 Areas of Circles and Sectors
Areas of Plane Figures 11-6 Arc Lengths and Areas of Sectors
Further Quadratic Problems
Circle Review Bingo The solutions are linked. Click on the answer on the next slide and it will jump you to the slide that is the question to the solution.
Starter Calculate the area and circumference (or perimeter) of the following shapes. Give your answers correct to 3 significant figures. A = 38.5 cm² C.
Area – Sine Rule – Higher – GCSE Questions
Presentation transcript:

10.4 Length of an Arc and Area of a Sector Additional Example 7 Additional Example 8 Additional Example 9 Additional Example 10 © SNP Panpac (H.K.) Ltd.

Additional Example 7 In the figure, AOB is a sector of a circle with centre O. The area of the sector is 60 cm2 and AOB = 45. Solution (a) Find the radius of the sector. (Give the answers correct to 2 decimal places.) (b) What is the length of ? Solution © SNP Panpac (H.K.) Ltd.

Solution (a) Let r cm be the radius of the sector. Area of a sector Additional Example 7 In the figure, AOB is a sector of a circle with centre O. The area of the sector is 60 cm2 and AOB = 45. (a) Find the radius of the sector. (b) What is the length of ? (Give the answers correct to 2 decimal places.) Solution Area of a sector (a) Let r cm be the radius of the sector. r = 12.360 8 Q7(b) = 12.36  The radius of the sector is 12.36 cm. © SNP Panpac (H.K.) Ltd.

Solution (b) The length of Arc length From (a), r = 12.360 8 = 9.71 cm Additional Example 7 In the figure, AOB is a sector of a circle with centre O. The area of the sector is 60 cm2 and AOB = 45. (a) Find the radius of the sector. (b) What is the length of ? (Give the answers correct to 2 decimal places.) Solution (b) The length of Arc length From (a), r = 12.360 8 = 9.71 cm © SNP Panpac (H.K.) Ltd.

Additional Example 8 In the figure, OAC is a semicircle with centre O and radius 42 cm. is an arc with centre D and radius BD. Find the perimeter of the figure. (Take  = .) Solution © SNP Panpac (H.K.) Ltd.

Solution Arc length = 132 cm AC = 2  OA = 2  42 cm = 84 cm BD = AC Additional Example 8 In the figure, OAC is a semicircle with centre O and radius 42 cm. is an arc with centre D and radius BD. Find the perimeter of the figure. Solution (Take  = .) Arc length = 132 cm AC = 2  OA = 2  42 cm = 84 cm BD = AC = 84 cm ( ABDC is a rectangle.) CD = BD = 84 cm (radius of circle)  AB = CD = 84 cm © SNP Panpac (H.K.) Ltd.

Solution Arc length = 132 cm Perimeter = + AB + = (132 + 84 + 132) cm Additional Example 8 In the figure, OAC is a semicircle with centre O and radius 42 cm. is an arc with centre D and radius BD. Find the perimeter of the figure. Solution (Take  = .) Arc length = 132 cm Perimeter = + AB + = (132 + 84 + 132) cm = 348 cm © SNP Panpac (H.K.) Ltd.

Additional Example 9 Given that the area of a sector is 80 cm2 and the angle of the sector is 80, find the radius of the sector. (Give the answer correct to 2 decimal places.) Solution © SNP Panpac (H.K.) Ltd.

Solution Let r cm be the radius of the sector. Area of a sector Additional Example 9 Given that the area of a sector is 80 cm2 and the angle of the sector is 80, find the radius of the sector. (Give the answer correct to 2 decimal places.) Solution Let r cm be the radius of the sector. Area of a sector r = 10.70  The radius of the sector is 10.70 cm. © SNP Panpac (H.K.) Ltd.

Additional Example 10 In the figure, the radius of sector AOB is 4 cm and AOB = 90. Find (Give the answers correct to 2 decimal places.) (a) the perimeter of the shaded region, Solution Solution (b) the area of the shaded region. © SNP Panpac (H.K.) Ltd.

Solution (a) In AOB, (Pyth. Theorem) AB2 = AO2 + OB2 Additional Example 10 In the figure, the radius of sector AOB is 4 cm and AOB = 90. Find (a) the perimeter of the shaded region, (b) the area of the shaded region. (Give the answers correct to 2 decimal places.) Solution (a) In AOB, (Pyth. Theorem) AB2 = AO2 + OB2 © SNP Panpac (H.K.) Ltd.

Solution Arc length = 2 cm Perimeter = AB + = 11.94 cm Q10(b) Additional Example 10 In the figure, the radius of sector AOB is 4 cm and AOB = 90. Find (a) the perimeter of the shaded region, (b) the area of the shaded region. (Give the answers correct to 2 decimal places.) Solution Arc length = 2 cm Perimeter = AB + Q10(b) = 11.94 cm © SNP Panpac (H.K.) Ltd.

= Area of sector AOB – Area of AOB Additional Example 10 In the figure, the radius of sector AOB is 4 cm and AOB = 90. Find (a) the perimeter of the shaded region, (b) the area of the shaded region. (Give the answers correct to 2 decimal places.) Solution (b) Area = Area of sector AOB – Area of AOB = 4.57 cm2 Area of a sector © SNP Panpac (H.K.) Ltd.