Residence times of alkali feldspar phenocrysts

Slides:



Advertisements
Similar presentations
Istituto Nazionale di Geofisica e Vulcanologia COV4 meeting - Quito, Ecuador, Jan , 2006 BET: A Probabilistic Tool for Long- and Short-term Volcanic.
Advertisements

Istituto Nazionale di Geofisica e Vulcanologia European Geosciences Union, General Assembly 2006, Vienna, Austria, 02 – 07 April 2006 BET: A Probabilistic.
Istituto Nazionale di Geofisica e Vulcanologia The International Merapi Workshop 2006, Yogyakarta, Indonesia, Sectember 2006 BET: A Probabilistic Tool.
Geochemistry and Mantle Source(s) for Carbonatitic and Potassic Lavas from SW Uganda G. N. Eby 1, F. E. Lloyd 2, A. R. Woolley 3, F. Stoppa 4 1 Dept. Envir.,
N THE CRUSTAL STRUCTURE OF SOUTHERN TYRRHENIAN SEA SUBDUCTION ZONE G. Gaudiosi (1),D. Lo Bascio (1),M. Maistrello (2),G.Musacchio (2) and I. Guerra (3)
Review on Modern Volcanology
XRPD (Rietveld method),TG, DTG and DTA investigation of SAFOD cuttings ( ) Federico Zorzi 1, Fabio Ferri 1 and Giulio Di Toro 1,2 1, Dipartimento.
The origin of rhyolitic spherulites at Rockhound State Park Nelia W. Dunbar Virginia T. McLemore New Mexico Bureau of Geology and Mineral Resources New.
Volcano Observatory Best Practice Workshop Near Term Eruption Forecasting Near Term Eruption Forecasting Erice, Sicily (IT), September 2011 CALDERAS.
By: David P. Hill, Roy A. Bailey, and Alan S. Ryall
Operational Earthquake Loss Forecasting in Italy: Preliminary Results I. Iervolino, 1 E. Chioccarelli, 1 M. Giorgio, 2 W. Marzocchi, 3 A. Lombardi, 3 G.
Variability in mineral assemblage, temperature, and oxygen fugacity in a suite of strongly peralkaline lavas and tuffs from Pantelleria, Italy John C.
Geochemical Processes of Lake Averno Kate Overmoe and Avery Cota.
Eruption Forecasting through the Bayesian Event Tree: the software package BET_EF INGV BET: a probabilistic tool for Eruption Forecasting and Volcanic.
Timescales of quartz crystallization estimated from glass inclusion faceting using 3D propagation phase-contrast x-ray tomography: examples from the Bishop.
Highly Silicic Compositions on the Moon Glotch et al. Presented by Mark Popinchalk.
Density analysis of magmatic and phreatomagmatic phases of the 934 AD Eldgjá eruption, southern Iceland William M. Moreland * and Þorvaldur Þórðarson Institute.
Finding of a Cs-rich pharmacosiderite-like mineral: preliminary data Petrini Elisa 1, Bellatreccia Fabio 1 and Cavallo Andrea 2 1University of ROMA3, Dept.
Amanda R Hintz SUNY University at Buffalo May 29, 2009.
Magma Ascent Rates Malcolm J Rutherford Dept. of Geological Sciences Brown University Providence RI (Presentation for MSA short Course Dec. 13, 2008)
Time scales of magmatic processes Chris Hawkesworth, Rhiannon George, Simon Turner, Georg Zellmer.
06/10/20021 MAGMA MIXING AT KARYMSKY: PETROLOGIC CONSTRAINTS AND MODEL Pavel Izbekov 1, John Eichelberger 1 and Boris Ivanov 2 1 Alaska Volcano Observatory,
Petropavlovsk-Kamchatsky, August 2004 RECURRENT CALDERA-FORMING ERUPTIONS: KSUDACH CASE STUDY Preliminary results of the ongoing petrological and experimental.
Application of SASHA for the Icelandic case Vera D’Amico 1, Dario Albarello 2, Ragnar Sigbjörnsson 3, Rajesh Rupakhety 3 1 Istituto Nazionale di Geofisica.
Photogrammetric and LIDAR surveys on the Sciara del Fuoco to monitor the 2007 Stromboli eruption Bernardo E. 1, Coltelli M. 2, Marsella M. 1, Proietti.
Volcanic eruptions Factors that determine the violence of an eruption
Melting processes and volatile fluxes at the Gakkel Ridge – do ultra-slow spreading systems reveal insights to Rift evolution? Alison Shaw, Mark Behn,
VISCOSITY The resistance of material to flow –the higher the viscosity, the less easily something (magma/lava) can flow Motor oil: Flagstaff vs. Phoenix.
eruptions of Bezymianny volcano, Kamchatka: Petrological snapshots of the compositionally changing magma system Pavel Izbekov Alaska Volcano.
Trace element concentrations in plagioclase phenocrysts of Karymsky andesite: Evidence for basalt replenishments Pavel Izbekov 1, John Eichelberger 1,
Crustal velocity and anisotropy temporal variations at Etna volcano (1) Istituto Nazionale di Geofisica e Vulcanologia, sezione di Napoli, Italy (2) Seismology.
The role of impact structures in localizing explosive volcanism on a contracting planet: Mercury Rebecca J. Thomas*, Dave A. Rothery, Susan J. Conway,
Top Five Famous Volcanoes
Diamonds in Archean Shoshonitic Lamprophyres - Conclusions
RACCE Educational project: implementation in Neapolitan area Partner AB5 Rosella Nave Fabio Sansivero Roberto Isaia Project co funded by the EU, Civil.
A summary lecture on two long-lived eruptions, and how we as scientists might respond to such events.
Calderas – a selective introduction
3-D ATTENUATION STRUCTURE FROM THE INVERSION OF MICROEARTHQUAKE PULSE WIDTH DATA: Inferences on the thermal state of the Campi Flegrei Caldera Aldo Zollo.
Laura Nichele Raines and Heather Lehto, Ph.D. Angelo State University, Department of Physics and Geosciences Introduction Acknowledgements Results References.
3. Calderas Dan Barker March 2009 Ngorongoro, Tanzania.
Ag. Earth Science Ms. Weigel
Carbon sources and biogeochemical processes in Monticchio maar lakes, Mt Vulture volcano (southern Italy): new geochemical constrains of active degassing.
TEP - Geohazards PDR co-location Meeting M.F. Buongiorno, M. Silvestri, M. Musacchio, Istituto Nazionale di Geofisica e Vulcanologia Terradue - Rome,
Mount Vesuvius.
Ventura G.1, Vilardo G.2, Isaia R. 2, Sepe V.1
Quantitative EPMA Mapping of Minor and Trace Elements in Zircons
Novarupta/ Katami Eruption
G. Mevi1,2, G. Muscari1, P. P. Bertagnolio1, I. Fiorucci1
Lecture 4a Common Error in EPMA: Secondary Fluorescence from Outside Primary Excitation Volume John Fournelle, Ph.D. Department of Geoscience University.
IAVCEI General Assembly, August 17th - 22nd - Reykjavik, Iceland
Key terms Risk The exposure of people to a
G. Mevi1,2, G. Muscari1, P. P. Bertagnolio1, I. Fiorucci1
Volcano Characteristics
Plate Tectonic features
Chapter 10-Volcanoes and Other Igneous Activity
OBJECTIVES: Types of Magma Anatomy of a Volcano Types of Volcanoes
Volcanism.
Carbonates in mantle xenoliths from the French Massif Central:
U-series Geochronology and the Age of Steep Cone Sentinel Meadows, Yellowstone National Park Shauna Bladt.
Pavel Izbekov1, John Eichelberger1, Thomas A. Vogel2 and Lina Patino2
10.1 The Nature of Volcanic Eruptions
Pamela Aaron, Dr. Charles Shearer, and Paul Burger
Geochemistry: Exploration, Environment, Analysis
Diversification 2.
I-5 Notes Dynamic Planet
10.1 Types of Volcanoes Anatomy of a Volcano
Calderas – a selective introduction
Eruptive history of the Campi Flegrei caldera during the last 15 ka
Caprai A. (1) , Calvi E. (1) , Doveri M. (1) , Leone G
Flexural Subsidence around Mt. Erebus, Ross Island, Antarctica
Presentation transcript:

Residence times of alkali feldspar phenocrysts European Geosciences Union - General Assembly 2016, Vienna, Austria, April 17-22 Residence times of alkali feldspar phenocrysts from magma feeding the Agnano-Monte Spina Eruption (4.7 ka), Campi Flegrei caldera (Napoli, southern Italy) based on Ba-zonation modelling Raffaella Silvia Iovine (1), Gerhard Wörner (1), Fabio Carmine Mazzeo (2), Ilenia Arienzo (3), Lorenzo Fedele (2), Lucia Civetta (4,2), Massimo D’Antonio (2), and Giovanni Orsi (2) Geowissenschaftliches Zentrum, Georg-August-Universität, Göttingen, Germany Diparimento di Scienze della Terra, dell’Ambiente e delle Risorse – Università degli Studi di Napoli Federico II, Napoli, Italy Istituto Nazionale di Geofisica e Vulcanologia – sezione di Napoli Osservatorio Vesuviano, Naples, Italy, (4) Istituto Nazionale di Geofisica e Vulcanologia – sezione di Palermo, Italy

Phlegrean Volcanic District: a large area with high volcanic risk Campi Flegrei caldera (or Phlegrean Fields) Ischia Island Procida Island Campi Flegrei Ischia Procida Agnano strong explosive activity in the past 60 ka, last eruption 1538 AD Campi Flegrei caldera is inhabited by 500,000 people

Campi Flegrei – Geology and Volcanology At least 72 eruptions, mostly explosive, occurred during the III Period, some of them accompanied by caldera collapse Two catastrophic explosive eruptions, accompanied by caldera collapse events, marked the Campi Flegrei history: Campanian Ignimbrite (39 ka) Neapolitan Yellow Tuff (15 ka) The pyroclastic rocks emplaced during these two major events are stratigraphic markers, allowing subdivision of the Campi Flegrei history in three periods The most abundant volcanic rocks are trachytes and phonolites; latites and shoshonites are much less abundant During the third epoch (5.5 – 3.7 cal ka B.P.) 22 eruptions occurred, from vents located within the Neapolitan Yellow Tuff caldera, mostly in its North-Eastern portion

Agnano-Monte Spina eruption (4.7 Cal ka B.P.) the highest magnitude event of the III epoch The A-MS eruption has been assumed as the maximum expected event in case of renewal of volcanism in short-mid terms at Campi Flegrei area covered by tephra: ca. 1,000 km2 volume of ejected magma: ca. 0.85 km3 (D.R.E.) collapsed area: ca. 6 km2 (Orsi et al., Bull. Volcanol., 2004; Orsi et al., E.P.S.L., 2009)

Agnano-Monte Spina eruption (4.7 Cal ka B.P.) Stratigraphy : 6 members A through F Agnano The A-MS eruption has been fed by magmas varying from more to less evolved trachyte; variable 87Sr/86Sr and trace elements suggest magma mixing between two end-members Arienzo et al., Chem. Geol., 2010

Agnano-Monte Spina eruption (4.7 Cal ka B.P.) Focus on zoned feldspar phenocrysts to constrain pre-eruption magmatic processes and their timescales through diffusional geochonometry Reconstruct crystal residence times in alkali feldspar phenocrysts Accumulated back-scattered electron (BSE) images combined with compositional profiles obtained through WDS-EDS-EMPA can provide insights into diffusion of key elements

Agnano-Monte Spina eruption (4.7 Cal ka B.P.) Diffusional geochronometry D : diffusivity of Ba in sanidine Cx0 : concentration of the element at that point xo cf and ci : maximum and minimum concentration of Ba along the diffusion interface, respectively erfc : error function xo - rim : mid-point of the profile D : calculated diffusivity in µm2/yrs t : diffusion time D0 = 0.29 m2/s, diffusion constant of Ba in sanidine E = 455000 J/mol, activation energy needed for diffusion R = 8.31 J/(mol · K), the gas constant T is the temperature of magma (K)

Agnano-Monte Spina eruption (4.7 Cal ka B.P.) Temperature constraints T = 900-950 °C P = 50-100 MPa (based on phase equilibria experiments at f(O2) ~NNO +1.3 with excess 50:50 H2O-CO2 mixed fluid (Roach, 2005) Temperatures used in residence times calculations: 900 °C 930 °C 950 °C

Agnano-Monte Spina eruption (4.7 Cal ka B.P.) Profiles in A-MS feldspars Profiles based on quantitative analyses Based on grey scale swath profiles core rim core rim t900°C = 1599yrs t930°C = 500yrs t950°C = 235yrs t900°C = 18yrs t930°C = 6yrs t950°C = 3yrs Core-to-rim compositional profile in a sanidine phenocryst from A-MS

Agnano-Monte Spina eruption (4.7 Cal ka B.P.) core rim core rim t930°C = 192yrs t930°C = 5yrs

Agnano-Monte Spina eruption (4.7 Cal ka B.P.) core rim core rim t930°C = 267yrs t930°C = 33yrs

Agnano-Monte Spina eruption (4.7 Cal ka B.P.) core rim core rim t=107 900°C t=33 930°C t=16 950°C

Agnano-Monte Spina eruption (4.7 Cal ka B.P.) Results from A-MS feldspars Quantitative analyses Grey values 0- 500yrs: 32 cx 500-4000yrs: 17 cx 0-100yrs: 40 cx 100-600yrs: 10 cx 900°C 0- 200yrs: 38 cx 200-1200yrs: 11 cx 0- 20yrs: 34 cx 20-180yrs: 16 cx 930°C 0-100yrs: 37 cx 100-600yrs: 12 cx 0-90yrs: 34 cx >90yrs: 16 cx 950°C

Agnano-Monte Spina eruption (4.7 Cal ka B.P.) Conclusions Residence times from BaO-quantitative profiles : to 1200 years at 930°C Most of the crystals <200yrs Residence times from grey scale swath profiles : 2 to 180 years at 930°C Most of the crystals <20yrs

Agnano-Monte Spina eruption (4.7 Cal ka B.P.) volume (km3 D.R.E)* age (ka B.P.)# time span Agnano-Monte Spina 0.854 4.67±0.09 Paleoastroni 2 0.010 4.71±0.07 Paleoastroni 1 0.050 4.68±0.09 ~100 yrs Residence times correspond to eruption frequencies Agnano 3 0.186 4.78±0.04 quiescence ~300 yrs Monte Sant’Angelo 0.070 5.08±0.12 Agnano 2 If meaningful, centuries to decades timescales can be interpreted as the time required for the magma to collect in the shallow reservoir (2-4 km) prior to the Agnano-Monte Spina eruption 0.014 n.a. ~500 yrs Agnano 1 0.018 5.56±0.05 Paleosol B * Orsi et al., E.P.S.L., 2009 # Orsi et al., Landesmuseum für Vorgeschichte, 2013

tens to hundreds of years Eruption frequencies: hundreds of years Residence times: tens to hundreds of years Eruption frequencies: hundreds of years Thanks for your attention Magma assembly times: tens to hundreds of years