Vacuum Leak Exercises CAS VACUUM, 6-16 June 2107

Slides:



Advertisements
Similar presentations
Plasma Window Options and Opportunities for Inertial Fusion Applications Leslie Bromberg Ady Herskovitch* MIT Plasma Science and Fusion Center ARIES meeting.
Advertisements

General Characteristics of Gas Detectors
Metrologia del vuoto negli ambienti industriali – Torino - 27 giugno 2013 Gas Flow Through Microchannels: mathematical models M. Bergoglio, D. Mari, V.
Introduction to Plasma-Surface Interactions Lecture 6 Divertors.
31/03/11FV 1 CEDAR from flammable gas safety point of view.
Drift velocity Adding polyatomic molecules (e.g. CH4 or CO2) to noble gases reduces electron instantaneous velocity; this cools electrons to a region where.
An Introduction To Helium Leak Detection Technology Darrell R. Morrow, PhD Leak Detection Associates, Inc. Blackwood, New Jersey.
High-Vacuum Technology Course
Center for Materials for Information Technology an NSF Materials Science and Engineering Center Vacuum Fundamentals Lecture 5 G.J. Mankey
Basics of Vacuum Technology Unit: Pa = N/m 2 = J/m 3 UnitPa or N/m 2 bar10 5 mbar100 atm= 760 torr x 10 5.
Pressure Measurement Muhajir Ab. Rahim
H 0 -H - PSB INJECTION VACUUM REQUIREMENTS C. Pasquino, P. Chiggiato, J. Hansen PSB - H0-H- injection review meeting, 18th April 2013.
Vacuum, Surfaces & Coatings Group Technology Department Vacuum tests for CLIC module prototypes 6 November 2013 C. Garion2 Outline: Reminder: specification.
MECHANISMS OF HEAT TRANSFER
E-CLOUD VACUUM OBSERVATIONS AND FORECAST IN THE LHC Vacuum Surfaces Coatings Group 03/07/2011 G. Bregliozzi On behalf of VSC Group with the contributions.
The MICE vacuum system Presented by Mark Tucker at CM-39, 26 June 2014.
Pressure 1 atmosphere ~ 1 bar ~ 760 mm Hg ~ 760 torr ~ 100,000 Pa Ion gauges read in mbar i.e. 1x mbar = 1x atm. Sometimes ion gauges read.
Vacuum system in the main Linacs C. Garion CERN/TE/VSC CLIC09 workshop, October.
Observations on possible factors affecting LAr purity on the 50kton TPC from the viewpoint of the internal walls Alejandro S. Díaz Chemical Engineering.
 W  S  P  g How do we express  S,  P, &  g in units of pressure?  S, the solute pressure or solute potential.  S = -RTC S Where R.
13/09/2005Vacuum Systems for Synchrotron Light Sources Workshop, Barcelona, Spain 1 Gas Flow Modelling in Design of the Vacuum System for of the Synchrotron.
M. Yoda, S. I. Abdel-Khalik, D. L. Sadowski, B. H. Mills, and J. D. Rader G. W. Woodruff School of Mechanical Engineering Updated Thermal Performance of.
Vacuum science.
Vacuum Fundamentals 1 atmosphere = 760 mm Hg = kPa 1 torr = 1 mm Hg vacuum range pressure range low 760 ~ 25 torr medium 25~ high ~ 10.
Techniques of Vacuum and Basics of High Voltage (2/3) Pauli Heikkinen Jyväskylä University.
Vacuum studies at LAL Bruno Mercier, Christophe Prevost Alexandre Gonnin, Christian Bourgeois, Dirk Zerwas R.P. ILD MDI Meeting 24/3/15.
09/13/20111 Status of high intensity polarized electron gun project at MIT-Bates Evgeni Tsentalovich MIT.
Center for Materials for Information Technology an NSF Materials Science and Engineering Center Vacuum Systems Lecture 6 G.J. Mankey
A Study of Back Diffusion in the ATLAS Muon Spectrometer Gas System Gordon Berman University of Michigan Advisors: Bing Zhou, Dan Levin, and Zhengguo Zhao.
Ionization Detectors Basic operation
05 Novembre 2003Chamonix XIV Workshop, January How to deal with leaks in the QRL and magnet insulation vacuum Paul Cruikshank for AT/VAC Germana.
Experimental and Numerical studies on Bulk Micromegas SINP group in RD51 Applied Nuclear Physics Division Saha Institute of Nuclear Physics Kolkata, West.
2009/1/16-18 ILD09 Seoul 1 Notes for ILD Beam Pipe (Technical Aspect) Y. Suetsugu, KEK Parasitic loss Vacuum pressure profile Some comments for beam pipe.
Vacuum Fundamentals High-Vacuum Technology Course Week 7 Paul Nash HE Subject Leader (Engineering)
Convection: Internal Flow ( )
EGA Technical World Leaders in Combustion Management Solutions Mk7 EGA.
1 Possibility to obtain a polarized hydrogen molecular target Dmitriy Toporkov Budker Institute of Nuclear Physics Novosibirsk, Russia XIV International.
1 Vacuum chambers for LHC LSS TS Workshop 2004 Pedro Costa Pinto TS department, MME group Surface Characterization & Coatings Section.
September 17-21, 2007Workshop on ILC Interaction Region Engineering Design, SLAC IR Vacuum Systems first thoughts Oleg Malyshev ASTeC, STFC Daresbury Laboratory.
2007/09/17-21 SLAC IRENG07 1 A Basic Design of IR Vacuum system Y. Suetsugu, KEK Possibility of a pumping system without in-situ baking at z < L*
THIN FILMS FOR CLIC ELEMENTS Outline Motivation The role of MME-CCS DB and MB transfer lines Main beam Main beam quadrupoles Other issues conclusions CLIC.
Section 5: Thin Film Deposition part 1 : sputtering and evaporation
Gas Laws Wasilla High School Kinetic Molecular Theory and Gas Behavior  The word kinetic refers to motion.  The energy an object has because.
Leak Detection method for Vacuum Systems Alexander Permogorov
Thin Film Technology - Student Talk Sophie Chauvin 02/02/16 Leak Detection method for Vacuum Systems 1.
Chemistry Chapter 5 Gases Dr. Daniel Schuerch. Gas Pressure Gas pressure is the result of simultaneous collisions of billions of rapidly moving particles.
Jari Koskinen 1 Thin Film Technology Lecture 2 Vacuum Surface Engineering Jari Koskinen 2014.
2007/09/17 SLAC IRENG07 1 Comment on IR Vacuum system Y. Suetsugu Pumping System without in-situ baking at z < L*
Vacuum System P. Chiggiato TE-VSC
INVESTIGATION OF NON-EVAPORABLE GETTER FILMS
Continuous Flow Isotope Ratio Mass Spectrometry
Activities on straw tube simulation
Sub-system integration for the VBOX
Vacuum Problems in the ILC Damping Ring
SAES Project: Combination of NEG module and sputter ion pump
Leak Detection Tutorial Work
G.Bregliozzi - VSC-LBV Section Collimation working group 08/07/02013
CAS 2017 Vacuum simulations
Lecture 25 Practice problems
PANDA Collaboration Meeting
FEBIAD ion source development efficiency improvement
Figure: Title: Atmospheric pressure. Caption:
International Union for Vacuum Science, Technique and Applications
V. Measurement pressure gauges, flow meters
CAS 2017 Vacuum simulations
Diffusion of gases A and B Plus Convection
VIII. Production of Vacuum
VISUAL AIDS for instruction in VACUUM TECHNOLOGY AND APPLICATIONS
Vacuum in LER and HER. First estimation for the pumping system requirements A.Variola for B.Mercier, C.Prevost, F.Letellier.
Vacuum System Design for the Target Monolith System
Presentation transcript:

Vacuum Leak Exercises CAS VACUUM, 6-16 June 2107

1. A system at 20⁰C has to achieve 10-9 mbar after prolonged pumping with a turbo molecular pump (SEFF = 300 Ls-1, independent of the gas type). What is the maximum allowable leakage?

2. A diffusion pump vacuum system with a chamber of 0.75 m3 is isolated from its pumps. The pressure increases from 2∙10-3 mbar to 5∙10-1 mbar in 10 minutes. A. What is the leakage rate, assuming no other gas source? B. After repairing a significant leak, the system could be evacuated to 5∙10-5 mbar with the diffusion pump (SEFF = 2000 Ls-1). What leakage remains?

3. The vacuum vessel has a volume of 5 m3. An air leak of 1.05 E-6 mbarl/s is present. Calculate the response time for 95% of the final signal on the leak detector when it is connected in position 1 with and without valve A open and the position 2 with and without valve B open. For each case, what is the signal on the detector when the leak is pocketed with helium ? Which of the 4 configurations is best for the leak test Q 1 Valve A SDP = 1000 L s-1 2 Valve B SLeakDetector at Inlet = 1 L s-1 Sprimary = 36 m3 h-1

4. A human hair is trapped across an O-ring on a vacuum system where the internal; pressure is 10-4 mbar and the external pressure is 103 mbar. The temperature is 20⁰C. Leakage of air into the vacuum system is occurring: A. If the trapped hair is a leak that can be regarded as a uniform tube of 70 um diameter (approximate diameter of a human hair) and length of about 8mm with the above pressure the exit and entrance, respectively, what is the nature of the flow across the leak? B. Estimate the leakage (qL)

Global He leak detection global He - flux de fuite   Reference leak flow Qf.ref mbar l.s-1 Signal of the reference leak Sf.ref - Signal of the leak Sf Residual value Sres He concentration conc % Leak rate Qf mbar.l.s-1 Global He – Sensibility of the test Mini readable value mli Sensibility of the tests Sensib. mbar.l..s-1 𝑄 𝑓 = 𝑄 𝑓. 𝑟𝑒𝑓 × (𝑆 𝑓 − 𝑟𝑒𝑠) 𝑆 𝑓.𝑟𝑒𝑓 −𝑟𝑒𝑠 × 1 𝐶𝑜𝑛𝑐 𝐻𝑒 𝑆𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦= 𝑄 𝑓. 𝑟𝑒𝑓 × 𝑚 𝑙𝑖 𝑆 𝑓.𝑟𝑒𝑓 −𝑟𝑒𝑠 × 1 𝐶𝑜𝑛𝑐 𝐻𝑒

Reference leak Correction for the reference leak Initial value of the reference leak QFref   mbarls-1 Year of the leak n Correction for the aging x %/an Difference of temperature ∆T deg C Correction for the temperature %/degC Corrected flux for the calibrated leak QFref cor 𝑄 𝑅𝑒𝑓 𝑓 𝑐𝑜𝑟 = (𝑄 𝑅𝑒𝑓𝑓 × (1−( 𝑥 100 )) 𝑛 ) (1± 𝑥 100 ) ∆𝑇

RESPONSE Time for leak detection 𝑡 0.95 =3× 𝑉 𝑄 𝑒𝑓𝑓 𝑡 0.95 =3× 10 −3 × 𝐿 2 𝐷

Introduction: AIR Leak in case of NEG coated chamber Variable Length Bayard-Alpert Gauge (DPend) Bayard-Alpert Gauge (DPinj) Air Leak Simulation de Monte-Carlo: On simule un banc NEG de longueur variable dans lequel on introduit une fuite d’air à son extrémité gauche Sur ce graphique, on peut voir le rapport des pressions entre le point d’injection et le bout du banc: On remarque que plus la distance du banc NEG augmente, plus le rapport devient grand: à 1 m de la fuite, pour N2, on a un rapport 3 pour O2, le rapport est de 25 À 28 m de la fuite, pour N2, on a un rapport 100 000 pour O2, le rapport est de 300 000 Différence de pressions entre N2 et O2 provenant des différentes vitesses de pompage du NEG On voit donc bien le pompage du NEG pour ces gaz On remarque que pour Ar, le rapport reste constant et égale a 1, ce qui traduit un pression égale en tout point du banc et qui démontre que ce gaz n’est pas pompé par le NEG Air: 78% N2 + 20% O2 + 2% Ar

Problematics The system is baked and no active pumping is installed The installation of a leak detector imply: Connect a turbo molecular pumps on a valves: start the pump down Install the bake out on the valves + transition +TMP in order to do not impact the NEG performance Bake out at least over night After 1 day we could start the leak detection of the vacuum sector This approach is not convenient for the operation where a fast analysis is necessary and the beam downtime should be minimized

NEG Pumping Mechanism H2: Diffuses into the getter bulk even at room temperature, Small quantities of H2 do not affect the pumping of other gases. CO & CO2: Molecules chemically absorbed on the getter surface No Diffusion in the bulk and affect the pumping speed of all the other gases, CO capacity ≈ 5·1014 molecules/cm2 N2: No Diffusion in the bulk and the absorption takes place underneath the first monolayer of the surface, Six adsorption sites to pump a single N2 molecule, N2 capacity ≈ about 7 times lower than for CO Do not affect the pumping speed of CO O2 & H2O: The capacity of NEG for O2 and H2O is estimated around 10 times larger than for CO

Introduction: Leak in case of NEG coated chambers Variable Length Bayard-Alpert Gauge (DPend) Bayard-Alpert Gauge (DPinj) Noble Gas Simulation de Monte-Carlo: On simule un banc NEG de longueur variable dans lequel on introduit une fuite d’air à son extrémité gauche Sur ce graphique, on peut voir le rapport des pressions entre le point d’injection et le bout du banc: On remarque que plus la distance du banc NEG augmente, plus le rapport devient grand: à 1 m de la fuite, pour N2, on a un rapport 3 pour O2, le rapport est de 25 À 28 m de la fuite, pour N2, on a un rapport 100 000 pour O2, le rapport est de 300 000 Différence de pressions entre N2 et O2 provenant des différentes vitesses de pompage du NEG On voit donc bien le pompage du NEG pour ces gaz On remarque que pour Ar, le rapport reste constant et égale a 1, ce qui traduit un pression égale en tout point du banc et qui démontre que ce gaz n’est pas pompé par le NEG The B-A sensitivity The effective conductance & Pumping speed in case of additional pumping

Example of a BA Gauge 0 V i- i+ e- A+ +10÷80 V +100÷300 V - Ions are produced in the volume enclosed by the grid. - The positive potential on the grid forms a barrier to the ions. - They are eventually collected at the central wire.

The BA Gauge Sensitivity The rate of ionization in the grid volume (I+/e) depends on: - the number of molecules in the grid volume (gas density n) - the ionization cross section for the specific gas at a specific electron energy (s) - the number of electrons traversing the grid per unit time (I-/e) - the average path length of the electrons in the grid (L) - the ion collection efficiency, for 100%: S is called the gauge sensitivity [S]=[Torr-1] It depends on: -the gas nature and electron energy; -the geometry and the electrostatic field; -the absolute temperature.

The B-A sensitivity: ionization cross section The maximum of the cross section is obtained for electron energy in the range 50 to 200 eV. Energy variations in this range results in a limited variation of the cross section: less than a factor 2. For lower energies the variation is much steeper

The conductance The quantity of gas which is flowing across a given pressure difference depends on the ease of flow, described by what we call CONDUCTANCE

The conductance of a beam pipe Cs = 15 l/s.m D = 5 cm Cs = 121 l/s.m D = 10 cm L [m] C, air 20° [l/s] 1 15 5 3 10 1.5 L [m] C, air 20° [l/s] 1 121 5 23 10 12.1

The conductance vs temperature and gas The conductance depends: Function of the temperature: Function of the molars mass: T[K] 4.2 77 150 300 500 600 1300 C [l/s] 20 88 122 100 224 245 361 Gaz H2 He CH4 H2O CO air O2 Ar CO2 M 2 4 16 18 28 29 32 40 44 Gaz H2 He CH4 H2O CO air O2 Ar CO2 C [l/s] 381 268 135 127 102 100 95 85 81

Noble gas leak detection

NEG Leak Detection Procedure Preparation Start LabView pressure logging (1 second) Open Variable Leak valve slowly (~50x graduations), monitoring the pressure P1 until ~1x10-9 mbar : record P1 & P2 Helium Apply low flow helium gas to the VLV, monitor the pressure increase at P2 and P1 record P1 , P2 & helium leak detector measurement Close VVR and start timer, accumulate for 300 seconds: record P1 & P2 Argon Apply low flow argon gas to the VLV, monitor the pressure increase at P2 and P1 record P1 P2 & helium leak detector measurement Close VVR and start timer : after 300s record P1 & P2

P2 P1 Turbo Molecular Pump GAS P1 P1 P2 P2 Variable Length Bayard-Alpert Gauge (DPend) Bayard-Alpert Gauge (DPinj) P1 Turbo Molecular Pump GAS P1 P1 P2 P2

Difference between P1 and P2 during dynamic injection of gases: Variable Length Bayard-Alpert Gauge (DPend) Bayard-Alpert Gauge (DPinj) P1 Turbo Molecular Pump GAS Difference between P1 and P2 during dynamic injection of gases: Pressure Helium Pressure Argon Effective Pumping Speed TMP Helium Effective Pumping Speed TMP Argon P1 3.1E-9 1.5e-8 43 P2 7.5E-10 1.8e-9 11 4.8 Ratio ≈4.1 ≈ 8.3 ≈ 3.9 ≈ 9 Effective pumping speed in the system is the main parameter Sensitivity of the gauges play an important role: Argon higher measured pressure

P2 P1 Turbo Molecular Pump GAS Variable Length Bayard-Alpert Gauge (DPend) Bayard-Alpert Gauge (DPinj) P1 Turbo Molecular Pump GAS

Difference between P1 and P2 during accumulation of gases: Variable Length Bayard-Alpert Gauge (DPend) Bayard-Alpert Gauge (DPinj) P1 GAS Difference between P1 and P2 during accumulation of gases: DP Helium DP Argon P1 = P2 1.5e-6 1.05e-8 Time 5’45 ‘’ 5’15’’ Volume [l] 3.3 Q mabrl/s ≈1.5e-8 ≈ 1.05e-9 Effective leak rate is the main parameter Sensitivity of the gauges play a minor role