CMB physics Zong-Kuan Guo 《现代宇宙学》 2017.5.27.

Slides:



Advertisements
Similar presentations
Request Dispatching for Cheap Energy Prices in Cloud Data Centers
Advertisements

SpringerLink Training Kit
Luminosity measurements at Hadron Colliders
From Word Embeddings To Document Distances
Choosing a Dental Plan Student Name
Virtual Environments and Computer Graphics
Chương 1: CÁC PHƯƠNG THỨC GIAO DỊCH TRÊN THỊ TRƯỜNG THẾ GIỚI
THỰC TIỄN KINH DOANH TRONG CỘNG ĐỒNG KINH TẾ ASEAN –
D. Phát triển thương hiệu
NHỮNG VẤN ĐỀ NỔI BẬT CỦA NỀN KINH TẾ VIỆT NAM GIAI ĐOẠN
Điều trị chống huyết khối trong tai biến mạch máu não
BÖnh Parkinson PGS.TS.BS NGUYỄN TRỌNG HƯNG BỆNH VIỆN LÃO KHOA TRUNG ƯƠNG TRƯỜNG ĐẠI HỌC Y HÀ NỘI Bác Ninh 2013.
Nasal Cannula X particulate mask
Evolving Architecture for Beyond the Standard Model
HF NOISE FILTERS PERFORMANCE
Electronics for Pedestrians – Passive Components –
Parameterization of Tabulated BRDFs Ian Mallett (me), Cem Yuksel
L-Systems and Affine Transformations
CMSC423: Bioinformatic Algorithms, Databases and Tools
Some aspect concerning the LMDZ dynamical core and its use
Bayesian Confidence Limits and Intervals
实习总结 (Internship Summary)
Current State of Japanese Economy under Negative Interest Rate and Proposed Remedies Naoyuki Yoshino Dean Asian Development Bank Institute Professor Emeritus,
Front End Electronics for SOI Monolithic Pixel Sensor
Face Recognition Monday, February 1, 2016.
Solving Rubik's Cube By: Etai Nativ.
CS284 Paper Presentation Arpad Kovacs
انتقال حرارت 2 خانم خسرویار.
Summer Student Program First results
Theoretical Results on Neutrinos
HERMESでのHard Exclusive生成過程による 核子内クォーク全角運動量についての研究
Wavelet Coherence & Cross-Wavelet Transform
yaSpMV: Yet Another SpMV Framework on GPUs
Creating Synthetic Microdata for Higher Educational Use in Japan: Reproduction of Distribution Type based on the Descriptive Statistics Kiyomi Shirakawa.
MOCLA02 Design of a Compact L-­band Transverse Deflecting Cavity with Arbitrary Polarizations for the SACLA Injector Sep. 14th, 2015 H. Maesaka, T. Asaka,
Hui Wang†*, Canturk Isci‡, Lavanya Subramanian*,
Fuel cell development program for electric vehicle
Overview of TST-2 Experiment
Optomechanics with atoms
داده کاوی سئوالات نمونه
Inter-system biases estimation in multi-GNSS relative positioning with GPS and Galileo Cecile Deprez and Rene Warnant University of Liege, Belgium  
ლექცია 4 - ფული და ინფლაცია
10. predavanje Novac i financijski sustav
Wissenschaftliche Aussprache zur Dissertation
FLUORECENCE MICROSCOPY SUPERRESOLUTION BLINK MICROSCOPY ON THE BASIS OF ENGINEERED DARK STATES* *Christian Steinhauer, Carsten Forthmann, Jan Vogelsang,
Particle acceleration during the gamma-ray flares of the Crab Nebular
Interpretations of the Derivative Gottfried Wilhelm Leibniz
Advisor: Chiuyuan Chen Student: Shao-Chun Lin
Widow Rockfish Assessment
SiW-ECAL Beam Test 2015 Kick-Off meeting
On Robust Neighbor Discovery in Mobile Wireless Networks
Chapter 6 并发:死锁和饥饿 Operating Systems: Internals and Design Principles
You NEED your book!!! Frequency Distribution
Y V =0 a V =V0 x b b V =0 z
Fairness-oriented Scheduling Support for Multicore Systems
Climate-Energy-Policy Interaction
Hui Wang†*, Canturk Isci‡, Lavanya Subramanian*,
Ch48 Statistics by Chtan FYHSKulai
The ABCD matrix for parabolic reflectors and its application to astigmatism free four-mirror cavities.
Measure Twice and Cut Once: Robust Dynamic Voltage Scaling for FPGAs
Online Learning: An Introduction
Factor Based Index of Systemic Stress (FISS)
What is Chemistry? Chemistry is: the study of matter & the changes it undergoes Composition Structure Properties Energy changes.
THE BERRY PHASE OF A BOGOLIUBOV QUASIPARTICLE IN AN ABRIKOSOV VORTEX*
Quantum-classical transition in optical twin beams and experimental applications to quantum metrology Ivano Ruo-Berchera Frascati.
The Toroidal Sporadic Source: Understanding Temporal Variations
FW 3.4: More Circle Practice
ارائه یک روش حل مبتنی بر استراتژی های تکاملی گروه بندی برای حل مسئله بسته بندی اقلام در ظروف
Decision Procedures Christoph M. Wintersteiger 9/11/2017 3:14 PM
Limits on Anomalous WWγ and WWZ Couplings from DØ
Presentation transcript:

CMB physics Zong-Kuan Guo 《现代宇宙学》 2017.5.27

Outline §Background § CMB anisotropy theory § CMB experiments Modern cosmology Cosmic Microwave Background (CMB) radiation § CMB anisotropy theory § CMB experiments § Cosmological implications Constraints on cosmological parameters Some anomalies

§Background – modern cosmology What is the Universe?

 4.5 Gpc  15 Gly

Cosmological Ladders Object Mass (M⊙) Size stars 1 7× 10 5 km star clusters 10 4  10 7 100 pc galaxies 10 8  10 13 1  50 kpc galaxy groups 10 14 1 Mpc galaxy clusters 10 15 3 Mpc superclusters 10 16 10 Mpc LSS 10 17 10  100 Mpc voids uncertain observable Universe 10 23 4 Gpc 1pc = 1AU/1arcsec = 3.086×10 16 m = 3.26 ly, 1M⊙= 2×10 30 kg

Fundamental assumptions Einstein’s gravitation Cosmological principle

Cosmological principle The Universe is homogeneous and isotropic on large scales. Homogeneity means that the Universe looks the same at each point. Isotropy means that the Universe looks the same in all directions. 𝑑𝑠 2 = 𝑔 𝜇𝜈 𝑑𝑥 𝜇 𝑑𝑥 𝜈 =− 𝑑𝑡 2 + 𝑎 2 (𝑡) 𝑑𝑟 2 1−𝑘 𝑟 2 + 𝑟 2 𝑑𝜃 2 + 𝑟 2 sin 2 𝜃 𝑑𝜙 2 This is called the Friedmann-Robertson-Walker (FRW) metric. -+++ metric signature!

Einstein’s gravitation Newton’s law of universal gravitation (1687) 𝐹=𝐺 𝑚 1 𝑚 2 𝑟 2 Einstein’s gravitation (1915, 228 years later) 𝐺 𝜇𝜈 =8𝜋𝐺 𝑇 𝜇𝜈 +/- signs! geometry of space-time matter and its motion “It is Probably the most Beautiful of all Existing Theories”

𝑅 𝜌 𝜎𝜇𝜈 = Γ 𝜌 𝜎𝜈,𝜇 − Γ 𝜌 𝜎𝜇,𝜈 + Γ 𝜆 𝜎𝜈 Γ 𝜌 𝜇𝜆 − Γ 𝜆 𝜎𝜇 Γ 𝜌 𝜈𝜆 Einstein tensor, Ricci tensor, Ricci scalar, Riemann tensor and affine connection are defined as 𝐺 𝜇𝜈 = 𝑅 𝜇𝜈 − 1 2 𝑔 𝜇𝜈 𝑅 𝑅 𝜇𝜈 = 𝑅 𝜆 𝜇𝜆𝜈 𝑅= 𝑔 𝜇𝜈 𝑅 𝜇𝜈 𝑅 𝜌 𝜎𝜇𝜈 = Γ 𝜌 𝜎𝜈,𝜇 − Γ 𝜌 𝜎𝜇,𝜈 + Γ 𝜆 𝜎𝜈 Γ 𝜌 𝜇𝜆 − Γ 𝜆 𝜎𝜇 Γ 𝜌 𝜈𝜆 +/- signs! Γ 𝜌 𝜇𝜈 = 1 2 𝑔 𝜌𝜎 𝑔 𝜎𝜈,𝜇 + 𝑔 𝜎𝜇,𝜈 − 𝑔 𝜇𝜈,𝜎

Geometry of the Universe (1) Euclidean geometry (k = 0, a flat Universe): an infinite space (2) spherical geometry (k > 0, a closed Universe): a finite size but no boundary (3) hyperbolic geometry (k < 0, a open Universe) The angles of a triangle add up to (more than, less than) 180°.

Evolution of the Universe

For a perfect fluid, the energy-momentum tensor is 𝑇 𝜇𝜈 = 𝜌+𝑃 𝑈 𝜇 𝑈 𝜈 +𝑃 𝑔 𝜇𝜈 𝐻 2 = 8𝜋𝐺 3 𝜌− 𝑘 𝑎 2 + Λ 3 The field equations: 1 𝑎 𝑑 2 𝑎 𝑑𝑡 2 =− 4𝜋𝐺 3 (𝜌+3𝑃)+ Λ 3 , 𝑑𝜌 𝑑𝑡 +3𝐻 𝜌+𝑃 =0 radiation (𝛾), 𝑤= 1 3 𝜌 𝛾 ∝ 𝑎 −4 𝑎(𝑡)∝ 𝑡 1/2 matter (b, c), 𝑤=0 𝜌 𝑏 ∝ 𝑎 −3 𝑎(𝑡)∝ 𝑡 2/3 vacuum energy (Λ), 𝑤=−1 𝜌 Λ ∝ 𝑎 0 𝑎(𝑡)∝ 𝑒 𝐻𝑡

Energy density evolution

Expansion and redshift A light propagating radially (𝑑𝜃=𝑑𝜙=0) from 𝑟 𝑒 to 𝑟 𝑟 obeys the geodesic equation 𝑑𝑠=0. 𝑡 𝑒 𝑡 𝑟 𝑑𝑡 𝑎(𝑡) = 𝑟 𝑒 𝑟 𝑟 𝑑𝑟 1−𝑘 𝑟 2 Consider a light ray emitted a short time interval later at the same coordinates, so the emission time is 𝑡 𝑒 +𝑑 𝑡 𝑒 and reception time is 𝑡 𝑟 +𝑑 𝑡 𝑟 . 𝑡 𝑒 + 𝑑𝑡 𝑒 𝑡 𝑟 +𝑑 𝑡 𝑟 𝑑𝑡 𝑎(𝑡) = 𝑟 𝑒 𝑟 𝑟 𝑑𝑟 1−𝑘 𝑟 2 𝑡 𝑒 𝑡 𝑒 +𝑑𝑡 𝑑𝑡 𝑎(𝑡) = 𝑡 𝑟 𝑡 𝑟 +𝑑 𝑡 𝑟 𝑑𝑡 𝑎(𝑡) ⟹ 𝑑 𝑡 𝑒 𝑎 𝑡 𝑒 = 𝑑 𝑡 𝑟 𝑎( 𝑡 𝑟 ) As the wavelength is proportional to the time between crests, λ∝𝑑𝑡∝𝑎(𝑡), so 1+𝑧= 𝜆 𝑟 𝜆 𝑒 = 𝑎( 𝑡 0 ) 𝑎( 𝑡 𝑒 ) 𝑡 𝑟 is identified with 𝑡 0 , to describe epochs of the Universe and the distances to objects.

Use this to define the parameter 𝜆: 4-momentum: 𝑃 𝜇 =(𝐸, 𝑃 ) 𝑃 𝜇 ≡ 𝑑 𝑥 𝜇 𝑑𝜆 Use this to define the parameter 𝜆: The zeroth component of the geodesic equation becomes 𝑑 2 𝑥 𝜇 𝑑 𝜆 2 =− Γ 𝛼𝛽 𝜇 𝑑 𝑥 𝛼 𝑑𝜆 𝑑 𝑥 𝛽 𝑑𝜆 𝐸 𝑑𝐸 𝑑𝑡 =− 𝛿 𝑖𝑗 𝑎 𝑎 𝑃 𝑖 𝑃 𝑗 A massless particle: 𝑔 𝜇𝜈 𝑃 𝜇 𝑃 𝜈 =0 ⇒ − 𝐸 2 + 𝛿 𝑖𝑗 𝑎 2 𝑃 𝑖 𝑃 𝑗 =0 𝑑𝐸 𝑑𝑡 + 𝑎 𝑎 𝐸=0 ⇒ 𝐸∝ 1 𝑎

1 MeV 3300 1100 10 energy redshift BBN radiation-matter equality redshift BBN radiation-matter equality recombination reionization now

Structure formation Gravitational instability: Gravity pulls material towards the denser regions, enhancing any initial irregularities. An irregular distribution of matter is therefore unstable under the influence of gravity, becoming more and more irregular as time goes by. please watch a video

Thermal history of the Universe

in thermal equilibrium (natural units ℏ=𝑐= 𝑘 𝐵 =1) 𝑛= 𝑔 (2𝜋) 3 𝑑 3 𝑝𝑓 𝑝 𝜌= 𝑔 (2𝜋) 3 𝑑 3 𝑝𝐸(𝑝)𝑓 𝑝 𝑃= 𝑔 (2𝜋) 3 𝑑 3 𝑝 𝑝 2 3𝐸(𝑝) 𝑓 𝑝 distribution function 𝑓 𝑝 = 1 𝑒 (𝐸−𝜇)/𝑇 ±1 , 𝐸 2 = 𝑝 2 + 𝑚 2

In the relativistic limit (𝑇≫𝑚) and 𝑇≫𝜇 𝑛= 𝜁(3) 𝜋 2 𝑔 𝑇 3 𝜌= 𝜋 2 30 𝑔 𝑇 4 𝑃= 𝜌 3 𝑛= 3 4 𝜁(3) 𝜋 2 𝑔 𝑇 3 𝜌= 7 8 𝜋 2 30 𝑔 𝑇 4 𝑃= 𝜌 3 Bose Fermi In the non-relativistic limit (𝑚≫𝑇) 𝑛=𝑔 𝑚𝑇 2𝜋 3/2 𝑒 −(𝑚−𝜇)/𝑇 𝜌=𝑛𝑚 𝑃=𝑛𝑇

the temperature of radiation scales like relativistic species 𝜌 𝑅 = 𝜋 2 30 𝑔 ∗ 𝑇 4 𝑃 𝑅 = 𝜌 𝑅 /3 𝑔 ∗ = 𝑖=Bosons 𝑔 𝑖 𝑇 𝑖 𝑇 4 + 7 8 𝑖=Fermions 𝑔 𝑖 𝑇 𝑖 𝑇 4 the temperature of radiation scales like 𝑇∝ 𝑎 −1

thermodynamic relation 𝑑𝐸=𝑇𝑑𝑆−𝑃𝑑𝑉 entropy density for photons 𝑠 𝛾 ≡ 𝑑𝑆 𝑑𝑉 = 1 𝑇 𝑑𝐸 𝑑𝑉 +𝑃 = 4 𝜌 𝛾 3𝑇 = 4 𝜋 2 45 𝑇 3 𝑛 𝑏 = 𝜌 𝑏 𝑚 𝑏 ∝ 𝑎 −3 ∝ 𝑇 3 The entropy per baryon is a constant. 𝜎≡ 𝑠 𝛾 𝑛 𝑏 = 4 𝜋 2 𝑇 0 3 /45 Ω 𝑏 𝜌 𝑐𝑟 / 𝑚 𝑝 ≈1.4× 10 8 Ω 𝑏 ℎ 2 −1 ~ 10 10

Three stages of cosmology

1. Hot Big Bang cosmology (1920s-1970s) Cosmic expansion (Hubble, 1929) Big Bang Nucleosynthesis (BBN) CMB black-body spectrum (COBE, 1989) Hubble’s Law: All galaxies are receding from us, the velocity of recession is proportional to the distance of an object from us. 𝑣 = 𝐻 0 𝑟 Riess et al 1996

2. Standard cosmology (1980s-2000s) inflation (Guth, 1981) dark energy (SCP and High-Z, 1998) cold dark matter (Fritz Zwicky, 1933)  inflation+CDM model rotation curve N-body simulation bullet clusters lensing Fritz Zwicky

3. Precision cosmology (2000s-now) CMB anisotropies (WMAP, Planck) LSS (BAO, GC, WL), SNIa (complement) 21cm (promising) SKA FAST LOFAR 𝑃 𝑙 64 antennas We know much but understand little.

1997-2002, 2-degree-Field Galaxy Redshift Survey (2dFGRS) 2000-now, Sloan Digital Sky Survey (SDSS), 2000-2005(SDSS-I), 2005-2008(SDSS-II), 2008-2014(SDSS-III), 2014-2020(SDSS-IV)

Observational windows

Electromagnetic waves Gravitational waves (LIGO, Virgo, LISA) Cosmic neutrino background (1.95 K) Cosmic ray (PAMELA, Fermi, AMS-02) … positon excess?

Radio waves: VLA, SKA, FAST, LOFAR Cosmic microwave background: COBE, WMAP, Planck Infrared: WISE, Spitzer, JWST(Wide Field InfraRed Survey Telescope, NASA, ESA, CSA, space-based, 2018 ), WFIRST (Wide Field InfraRed Survey Telescope, NASA, space-based, mid-2020) Optical: Hubble (1990 ), 2dFGRS (1997  2002), SDSS (2000  2020), Euclid (ESA, space-based, 2020 ), LSST (Large Synoptic Survey Telescope, 2022 ) Ultraviolet: GALEX X-rays: Chandra, XMM-Newton Gamma-ray: Fermi LAT (0.02  300 GeV), H.E.S.S. (0.01  10 TeV) Wider, Faster, Deeper

Astrophysical powers of Electromagnetic Radiation Gravitational Rotational Nuclear Magnetic

30  300 GHz

LIGO Virgo please watch a video LISA PTA 2030~2034

引力波

X-ray ultraviolet optical infrared composite The composite image of Arp 147: Chandra X-ray data (pink), Hubble optical data (red, green and blue), ultraviolet GALEX data (green) and infrared Spitzer data (red). http://chandra.harvard.edu/photo/2011/arp147/more.html

X-ray ultraviolet optical infrared composite The composite image of the Cartwheel Galaxy: Chandra X-ray data (purple), ultraviolet GALEX data (blue), Hubble optical data (green) and infrared Spitzer data (red). http://chandra.harvard.edu/photo/2006/cartwheel/more.html

Origin of the CMB radiation § Background – CMB Origin of the CMB radiation 100 GeV 100 MeV MeV eV meV

The physics of Recombination the epoch at which charged electrons and protons formed neutral hydrogen. 𝑒 − +𝑝↔𝐻+𝛾 (13.6 eV) in thermal equilibrium (𝐸≈𝑚+ 𝑝 2 2𝑚 , 0 ∞ 𝑑𝑥4𝜋 𝑥 2 𝑒 − 𝑥 2 = 𝜋 3/2 ) 𝑛 𝑒 = 2 (2𝜋) 3 exp − 𝑚 𝑒 − 𝜇 𝑒 𝑇 2𝜋 𝑚 𝑒 𝑇 3/2 𝑛 𝑝 = 2 (2𝜋) 3 exp − 𝑚 𝑝 − 𝜇 𝑝 𝑇 2𝜋 𝑚 𝑝 𝑇 3/2 𝑛 𝐻 = 4 (2𝜋) 3 exp − 𝑚 𝐻 − 𝜇 𝐻 𝑇 2𝜋 𝑚 𝐻 𝑇 3/2

in chemical equilibrium ( 𝜇 𝛾 =0) 𝜇 𝑒 + 𝜇 𝑝 − 𝜇 𝐻 =0 The Universe is globally neutral. 𝑛 𝑒 = 𝑛 𝑝 the binding energy of hydrogen ∆≡ 𝑚 𝑒 + 𝑚 𝑝 − 𝑚 𝐻 𝑛 𝑒 2 𝑛 𝐻 = 𝑚 𝑒 𝑇 2𝜋 3/2 𝑒 −∆/𝑇 the ionization fraction 𝑥 𝑒 ≡ 𝑛 𝑒 /( 𝑛 𝑒 + 𝑛 𝐻 ), 𝑛 𝑏 ≡ 𝑛 𝑝 + 𝑛 𝐻 𝑥 𝑒 2 1−𝑥 𝑒 = 1 𝑛 𝑏 𝑚 𝑒 𝑇 2𝜋 3/2 𝑒 −∆/𝑇

define the recombination temperature 𝑇 𝑟𝑒𝑐 when 𝑥 𝑒 =1/2 𝑥 𝑒 2 1−𝑥 𝑒 = 45𝜎 4 𝜋 2 𝑚 𝑒 2𝜋𝑇 3/2 𝑒 −∆/𝑇 (Saha equation) 𝑠 𝛾 = 4 𝜋 2 45 𝑇 3 𝜎≡ 𝑠 𝛾 𝑛 𝑏 ≈1.4× 10 8 Ω 𝑏 ℎ 2 −1 ~ 10 10 define the recombination temperature 𝑇 𝑟𝑒𝑐 when 𝑥 𝑒 =1/2 For Ω 𝑏 ℎ 2 =0.02, 𝑇 𝑟𝑒𝑐 =3757 K=0.32 eV, 𝑧 𝑟𝑒𝑐 =1376

Why is the recombination temperature much lower than the binding energy of hydrogen? 𝑇 𝑟𝑒𝑐 ≪13.6 eV Since there are so many more photons than baryons in the Universe, even at a temperature much below ∆=13.6 eV there are still enough photons in the high-energy tail of the Planck distribution to keep the Universe ionized. 𝜂≡ 𝑛 𝑏 𝑛 𝛾 ~ 10 −10 𝐼 𝜆 = 8𝜋ℎ𝑐 𝜆 5 1 𝑒 ℎ𝑐/𝜆𝑘𝑇 −1

Freeze-out temperature of recombination at which recombination froze out. 𝑝+ 𝑒 − ↔𝐻+𝛾 the cross section of the reaction 𝜎 𝑅 𝑣 ≈4.7× 10 −24 𝑇 1 eV −1/2 cm 2 the reaction rate Γ 𝑅 = 𝑛 𝑝 𝜎 𝑅 𝑣 = 𝑥 𝑒 𝑛 𝑏 𝜎 𝑅 𝑣 ≈2.4× 10 −10 cm −1 Ω 𝑏 ℎ 2 1/2 𝑇 1 eV 7/4 𝑒 −∆/2𝑇 the expansion rate 𝐻 2 = 8𝜋𝐺 3 Ω 𝑚 𝜌 𝑐 𝑇 𝑇 0 3 𝐻≈3× 10 −23 cm −1 Ω 𝑚 ℎ 2 1/2 𝑇 1 eV 3/2

the freeze-out temperature Γ(𝑇 𝑔 )=𝐻( 𝑇 𝑔 ) 𝑇 𝑔 1 eV 1/4 𝑒 −∆/2 𝑇 𝑔 =1.2× 10 −13 Ω 𝑚 Ω 𝑏 1/2 For Ω 𝑚 =7 Ω 𝑏 , 𝑇 𝑔 =0.24 eV, 𝑧 𝑔 =1010 𝑇 𝑑𝑒𝑐 𝑇 𝑔

Freeze-out temperature of Thomson scattering 𝛾+ 𝑒 − ↔𝛾+ 𝑒 − the cross section 𝜎 𝑇 ≈6.65× 10 −25 cm 2 the reaction rate Γ 𝑇 = 𝑛 𝑒 𝜎 𝑇 = 𝑥 𝑒 𝑛 𝑏 𝜎 𝑇 ≈3.6× 10 −11 cm −1 Ω 𝑏 ℎ 2 1/2 𝑇 1 eV 9/4 𝑒 −∆/2𝑇 the freeze-out temperature Γ(𝑇 𝑑𝑒𝑐 )=𝐻( 𝑇 𝑑𝑒𝑐 ) For Ω 𝑚 =7 Ω 𝑏 , 𝑇 𝑑𝑒𝑐 =0.26 eV, 𝑧 𝑑𝑒𝑐 =1100

a hot-plasma soup 400 cm −3 now 𝑻 𝒓𝒆𝒄 =𝟎.𝟑𝟐eV 𝑻 𝒈 =𝟎.𝟐𝟒eV

Discovery of the CMB

The CMB was first predicted by G. Gamow, R. Alpher and R. Herman in 1948. T~5 K The first discovery of the CMB radiation by A.A. Penzias and R.W. Wilson in 1964-1965. It is interpreted by R. Dicke, R. Wilkinson, J. Peebles, et. al. in 1965. The Nobel Prize in Physics 1978: A.A. Penzias and R.W. Wilson

1%来自CMB 任何方向 任何地点 任何时间 “世界上怕就怕‘认真’二字,共产党就最讲认真。”

Thanks for your attention!