Chemical Composition of UHECRs Observed by AGASA

Slides:



Advertisements
Similar presentations
AGASA Results Max-Planck-Institut für Physik, München, Germany Masahiro Teshima for AGASA collaboration at 3 rd Int. Workshop on UHECR, Univ. Leeds.
Advertisements

JNM Dec Annecy, France The High Resolution Fly’s Eye John Matthews University of Utah Department of Physics and High Energy Astrophysics Institute.
Stereo Spectrum of UHECR Showers at the HiRes Detector  The Measurement Technique  Event Reconstruction  Monte Carlo Simulation  Aperture Determination.
Results from the Telescope Array experiment H. Tokuno Tokyo Tech The Telescope Array Collaboration 1.
Nuclei As Ultra High Energy Cosmic Rays Oleg Kalashev* UCLA, INR RAS GZK 40: The 3rd International Workshop on THE HIGHEST ENERGY COSMIC RAYS AND THEIR.
An update on the High Energy End of the Cosmic Ray spectra M. Ave.
The Pierre Auger Observatory Nicolás G. Busca Fermilab-University of Chicago FNAL User’s Meeting, May 2006.
TeVPA, July , SLAC 1 Cosmic rays at the knee and above with IceTop and IceCube Serap Tilav for The IceCube Collaboration South Pole 4 Feb 2009.
AGASA update M. Teshima ICRR, U of CfCP mini workshop Oct
Search for Extremely-high Energy Cosmic Neutrino with IceCube Chiba Univ. Mio Ono.
AGASA Masahiro Teshima Max-Planck-Institut für Physik, München, Germany for AGASA collaboration.
07/05/2003 Valencia1 The Ultra-High Energy Cosmic Rays Introduction Data Acceleration and propagation Numerical Simulations (Results) Conclusions Isola.
TAUP 2005: Zaragoza Observations of Ultra-high Energy Cosmic Rays Alan Watson University of Leeds Spokesperson for Pierre Auger Observatory
Atmospheric Neutrino Oscillations in Soudan 2
EHE Search for EHE neutrinos with the IceCube detector Aya Ishihara for the IceCube collaboration Chiba University.
Status of Cosmic Rays Physics at the Knee Andrea Chiavassa Università and INFN Torino NOW 2006 Otranto 9-16 September 2006.
Konstantin Belov. GZK-40, Moscow. Konstantin Belov High Resolution Fly’s Eye (HiRes) Collaboration GZK-40. INR, Moscow. May 17, measurements by fluorescence.
Size and Energy Spectra of incident cosmic radiation obtained by the MAKET - ANI surface array on mountain Aragats. (Final results from MAKET-ANI detector)‏
Moriond 2001Jordan GoodmanMilagro Collaboration The Milagro Gamma Ray Observatory The Physics of Milagro Milagrito –Mrk 501 –GRB a Milagro –Description.
A new approach to EAS investigations in energy region eV R.P.Kokoulin for DECOR Collaboration Moscow Engineering Physics Institute, Russia.
The importance of knowing the primary mass – and how little we really know Alan Watson University of Leeds Pylos: 7 September 2004.
LBL November 3, 2003 selection & comments 14 June 2004 Thomas K. Gaisser Anatomy of the Cosmic-ray Energy Spectrum from the knee to the ankle.
Results of Experiments in Akeno Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich, Germany Max-Planck-Institut für Physik.
Hajime Takami Institute for the Physics and Mathematics of the Universe, the University of Tokyo High Energy Astrophysics KEK, Tsukuba, Nov. 11,
Ultra High Energy Cosmic Rays -- Origin and Propagation of UHECRs -- M.Teshima Max-Planck-Institut f ü r Physik, M ü nchen Erice Summer School July
Humberto Salazar (FCFM-BUAP) for the Pierre Auger Collaboration, CTEQ- Fermilab School Lima, Peru, August 2012 Ultrahigh Cosmic Rays: The highest energy.
Properties of giant air showers and the problem of energy estimation of initial particles M.I. Pravdin for Yukutsk Collaboration Yu.G. Shafer Institute.
Energy Spectrum C. O. Escobar Pierre Auger Director’s Review December /15/2011Fermilab Director's Review1.
Multi-TeV  -ray Astronomy with GRAPES-3 Pravata K Mohanty On behalf of the GRAPE-3 collaboration Tata Institute of Fundamental Research, Mumbai Workshop.
AGASA Results Masahiro Teshima for AGASA collaboration
Results of AGASA Experiment __Energy spectrum & Chemical composition __ Kenji SHINOZAKI Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Munich,
Ultra High Energy Cosmic Rays at Pierre Auger Observatory
Hadronic interaction studies with the ARGO-YBJ experiment (5,800 m 2 ) 10 Pads (56 x 62 cm 2 ) for each RPC 8 Strips (6.5 x 62 cm 2 ) for each Pad ( 
Air-showers, bursts and high-energy families detected by hybrid experiment at Mt.Chacaltaya M.Tamada Kinki University M.Tamada ICRC2011, Beijing, 15 Aug.
“The Cosmic Ray composition in the knee region and the hadronic interaction models” G. Navarra INFN and University, Torino, Italy For the EAS-TOP Collaboration.
June 6, 2006 CALOR 2006 E. Hays University of Chicago / Argonne National Lab VERITAS Imaging Calorimetry at Very High Energies.
John BelzUniversity of Montana Anisotropy Studies of Ultra-High Energy Cosmic Rays Using Monocular Data Collected by the High-Resolution Fly’s Eye (HiRes)
The KASCADE-Grande Experiment: an Overview Andrea Chiavassa Universita’ di Torino for the KASCADE-Grande Collaboration.
Cosmic Rays from to eV. Open Problem and Experimental Results. (KASCADE-Grande view) Very High Energy Phenomena in the Universe XLIV th Rencontres.
QUARKS-2010, Kolomna1 Study of the Energy Spectrum and the Composition of the Primary Cosmic Radiation at Super-high Energies.
NEVOD-DECOR experiment: results and future A.A.Petrukhin for Russian-Italian Collaboration Contents MSU, May 16, New method of EAS investigations.
AGASA Results Masahiro Teshima Max-Planck-Institut für Physik, München, Germany for AGASA collaboration.
L. CazónHadron-Hadron & Cosmic-Rays interactions at multi-TeV energies. Trento,2-Dez Results from the Pierre Auger Observatory L. Cazon, for the.
High Energy Cosmic Rays The Primary Particle Types Paul Sommers for Alan Watson Epiphany Conference, Cracow January 10, 2004.
Space-time structure of signals in scintillation detectors of EAS L.G. Dedenko, G.F. Fedorova, T.M. Roganova and D.A. Podgrudkov.
Ultra High Energy Cosmic Rays: The disappointing model Askhat Gazizov LNGS, INFN, Italy in collaboration with Roberto Aloisio and Veniamin Berezinsky April.
1 Cosmic Ray Physics with IceTop and IceCube Serap Tilav University of Delaware for The IceCube Collaboration ISVHECRI2010 June 28 - July 2, 2010 Fermilab.
EHE Search for EHE neutrinos with the IceCube detector Aya Ishihara Chiba University.
AGASA results Anisotropy of EHE CR arrival direction distribution M. Teshima ICRR, U of Tokyo.
Search for Anisotropy with the Pierre Auger Observatory Matthias Leuthold for the Pierre Auger Collaboration EPS Manchester 2007.
Ultra High Energy Cosmic Rays -- observational results -- M.Teshima Max-Planck-Institut f ü r Physik, M ü nchen Erice Summer School July
Cosmic Ray Composition Primary cosmic particles collide with atoms in the Earth's atmosphere and produce a cascade of short lived particles, which can.
Measurement of high energy cosmic rays by the new Tibet hybrid experiment J. Huang for the Tibet ASγCollaboration a a Institute of high energy physics,
MEASUREMENTS OF COSMIC RAYS WITH PRIMARY ENERGIES UP TO 1020 eV
Andrea Chiavassa Universita` degli Studi di Torino
Newt Ganugapati and Teresa Montaruli
Theoretical status of high energy cosmic rays and neutrinos
Cosmic Rays at Extreme Energies The Pierre Auger Observatory
Ultra High Energy Cosmic Ray Spectrum Measured by HiRes Experiment
Pierre Auger Observatory Present and Future
Comparison Of High Energy Hadronic Interaction Models
observations of the muon bundles with IceCube
Comparison Of High Energy Hadronic Interaction Models
Latest Results from the KASCADE-Grande experiment
Telescope Array Experiment Status and Prospects
M.Tamada Kinki University
Estimation of Sensitivity to Gamma Ray point Sources above 30TeV
The Aperture and Precision of the Auger Observatory
Studies and results at Pierre Auger Observatory
Presentation transcript:

Chemical Composition of UHECRs Observed by AGASA Kenji Shinozaki Max-Planck-Institut für Physik, Munich for AGASA Collaboration M.Chikawa (Kinki); M.Fukushima, N.Hayashida, K.Mase, H.Ohoka, S.Osone, N.Sakurai, M.Sasaki, R.Torii (ICRR-Tokyo); K.Honda, N.Kawasumi, I.Tsushima (Yamanashi); N.Inoue (Saitama); K.Kadota (Musashi Inst. Tech.); F.Kakimoto (TITech); K.Kamata (Nishina Fund.); S.Kawaguchi (Hirosaki); S.Kawakami (Osaka C.); Y.Kawasaki, N.Sakaki, M.Takeda, H.M.Shimizu (RIKEN); S.Mizobuchi, H.Yoshii (Ehime); M.Nagano (Fukui U.Tech);K.Shinozaki, M.Teshima (MPI-Munich); Y.Uchihori (NIRS); T.Yamamoto (Chicago); S.Yoshida (Chiba) 28th International Cosmic Ray Conference (Tsukuba) August 2, 2003

Introduction Presence of Super-GZK particles No location identified as their sources Origin models Bottom-up scenarios AGNs / GRBs / Galactic clusters etc. ⇒ Hadronic primaries predicted Top-Down scenarios Topological defects / SHDM / Z-burst ⇒ Gamma-ray + nucleon primaries predicted UHECR composition is important to understand origin character ⇒ Muons in giant air shower are key observable for AGASA

AGASA (Akeno Giant Air Shower Array) 111 surface detector (2.2m2) Covering ~100km2 area 27 muon detectors (south region) 14–20 Proportional counters (2.8–10m2) Shielded by 30cm Fe or 1m concrete Threshold energy: 0.5GeVxsecθ Triggered by accompanying surface detector Akeno Observatory 35.7ºN 138.5ºE 900m asl. 920g/cm2 Surface detectors x111 Muon detectors x27

Lateral distribution of muons No significant change in lateral distribution shape up to 1020eV rm(R)=C(R/R0)-1.2(1+R/R0)-2.52(1+(R[m]/800)3)-0.6 ,E0=1017.5–1019eV R0: Characteristic distance (280m @q=25o) Lateral distribution function obtained by A1 Experiment (Hayashida et al. 1995)

Primary mass estimator E0 =1.8x1020 [eV] rm(1000) = 2.4 [1/m2] Lateral distribution Muon density at 1000m rm(1000) Fitting muon data in R=800-1600m to LDM Meas. error~±40% Muon: Empirical formulae Charged particle:

Event selection Dataset (13 December 1995 – 31 December 2002) E0 ≥1019eV Zenith angle: q≤36º Normal event quality cuts ≥2 muon detectors in R=800m–1600m ⇒ rm(1000) Statistics 129 events above 1019eV 19 events above 1019.5eV

Simulations Proton / iron primaries AIRES+QGSJET Gamma-ray primaries (Geomag. + LPM) Geomagnetic field effect Significant above 1019.5eV Code by Stanev &Vankov LPM effect Significant above 1019.0eV Included in AIRES Detector configuration & analysis process

rm(1000) distribution >1019eV Consistent with proton dominant component Average relationship rm (1000)[m−2]= (1.26±0.16)(E0[eV]/1019)0.93±0.13 1 Log(Muon density@1000m[m–2]) −1 −2 19 19.5 20 20.5 Log(Energy [eV])

Akeno 1km2 (A1): Hayashida et al. ’95 (Interpreted by AIRES+QGSJET) Iron fraction (p+Fe 2comp. assumption) Present result (@90% CL) Fe frac.: <35% (1019 –1019.5 eV) <76% (above 1019.5eV) A1: PRELIMINARY Akeno 1km2 (A1): Hayashida et al. ’95 (Interpreted by AIRES+QGSJET) Gradual decrease of Fe fraction between 1017.5 & 1019eV VERY PRELIMINARY Haverah Park (HP): Ave et al. ’03 Volcano Ranch (VR): Dova et al. (present conf.) HiRes (HiRes): Archbold et al. (present conf.)

Limits on gamma-ray fraction Assuming 2-comp. (p+gamma-ray) primaries Gamma-ray fraction upper limits (@90%CL) to observed events 34% (>1019eV) (g/p<0.45) 56% (>1019.5eV) (g/p<1.27) Topological defects (Sigl et al. ‘01) (Mx=1016[eV]; flux normalised@1020eV ) Z-burst model(Sigl et al. ‘01) (Flux normalised@1020eV) SHDM-model (Berezinski ‘03) (Mx=1014[eV]; flux normalised@1020eV ) SHDM-model (Berezinski et al. ‘98) (Mx=1014[eV]; flux normalised@1019eV )

Summary AGASA muon data in showers above 1019eV (q<36o) No significant change in lateral distribution shape up to 1020eV rm(1000)[m−2]= (1.26±0.16)(E0[eV]/1019) 0.93±0.13 UHECR composition interpreted by AIRES+QGSJET (p+Fe 2 composition) E0 = 1017.5 −1019eV (Akeno 1km2 data; VERY PRELIMINARY) Primary mass: gradual decrease from middle heavy to light Above 1019eV Proton dominance favoured & consistent with extrapolation from lower energies Fe fraction less than 40%@90%CL (>1019eV) Gamma-ray flux in UHECRs No evidence for gamma-ray dominance Upper limit@90%CL on gamma-ray fraction mixed with proton <34% above 1019eV <56% above 1019.5eV to observed UHECRs These limits can be possible constraints against origin models

Another approach (Energy underestimation for gamma-rays) Effects on UHE Gamma-ray LPM effect (>3x1019eV) Geomagnetic effect (>5x1019eV) Possible anisotropy in the sky expected for UHE gamma-rays No indication found for UHE gamma-rays (present low statistics) Possible approach for future large-scale experiments Akeno sky up to 45o q=24.6° GMF LPM

Introduction Presence of Super-GZK particles No location identified as their sources Origin models Bottom-up scenarios AGNs / GRBs / Galactic clusters etc. ⇒ Hadronic primaries predicted Top-Down scenarios Topological defects / SHDM / Z-burst ⇒ Gamma-ray + nucleon primaries predicted UHECR composition is key discriminator of models ⇒ Muons in giant air shower are key observable for AGASA

Introduction Presence of Super-GZK particles No location identified as their sources Origin models Bottom-up scenarios AGNs / GRBs / Galactic clusters etc. ⇒ Hadronic primaries predicted Top-Down scenarios Topological defects / SHDM / Z-burst ⇒ Gamma-ray + nucleon primaries predicted UHECR composition is key discriminator of models ⇒ Muons in giant air shower are key observable for AGASA

Limits on gamma-ray fraction Assuming 2-comp. (p+gamma-ray) primaries Gamma-ray fraction upper limits (@90%CL) 34% (>1019eV) (g/p<0.45) 56% (>1019.5eV) (g/p<1.27) to observed events Topological defects (Sigl et al. ‘01) (Mx=1016[eV]; flux normalised@1020eV ) Z-burst model(Sigl et al. ‘01) (Flux normalised@1020eV) SHDM-model (Berezinski et al. ‘98) (Mx=1014[eV]; flux normalised@1019eV )

Limits on gamma-ray fraction Assuming 2-comp. (p+gamma-ray) primaries Gamma-ray fraction upper limits (@90%CL) to observed events 34% (>1019eV) (g/p<0.45) 56% (>1019.5eV) (g/p<1.27) Topological defects (Sigl et al. ‘01) (Mx=1016[eV]; flux normalised@1020eV ) Z-burst model(Sigl et al. ‘01) (Flux normalised@1020eV) SHDM-model (Berezinski et al. ‘98) (Mx=1014[eV]; flux normalised@1019eV )

Limits on gamma-ray fraction Assuming 2-comp. (p+gamma-ray) primaries Gamma-ray fraction upper limits (@90%CL) to observed events 34% (>1019eV) (g/p<0.45) 56% (>1019.5eV) (g/p<1.27) Topological defects (Sigl et al. ‘01) (Mx=1016[eV]; flux normalised@1020eV ) Z-burst model(Sigl et al. ‘01) (Flux normalised@1020eV) SHDM-model (Berezinski et al. ‘98) (Mx=1014[eV]; flux normalised@1019eV )

Limits on gamma-ray fraction Assuming 2-comp. (p+gamma-ray) primaries Gamma-ray fraction upper limits (@90%CL) to observed events 34% (>1019eV) (g/p<0.45) 56% (>1019.5eV) (g/p<1.27) Topological defects (Sigl et al. ‘01) (Mx=1016[eV]; flux normalised@1020eV ) Z-burst model(Sigl et al. ‘01) (Flux normalised@1020eV) SHDM-model (Berezinski ‘03) (Mx=1014[eV]; flux normalised@1020eV ) SHDM-model (Berezinski ‘98) (Mx=1014[eV]; flux normalised@1019eV )

Muon component No significant change in shape of LDM up to 1020eV Muon density@1000m rµ (1000) ~20% to total charged particles Feasible mass estimator for UHECRs rm(R)=C(R/R0)-1.2(1+R/R0)-2.52(1+(R[m]/800)3)-0.6 ,E0=1017.5–1019eV R0: Characteristic distance (280m @q=25o) Lateral distribution function obtained by A1 Experiment (Hayashida et al. 1995)

S(600) vs. E0 LPM GMF q=24.6°

S(600) vs. E0 LPM GMF q=24.6°

Fraction of iron Present result: Frac. of Fe 14 % above 1019eV Assuming 2-comp. (p+Fe) 1ries Muon density or Xmax ® Frac. of iron (AIRES+QGSJET) Present result: Frac. of Fe 14 % above 1019eV +14 –16 Compiled by Nagano & Watson ‘00 Haverah Park: Ave et al. ’03 Valcano Ranch: Dova et al. (present conf.)

Average primary mass (Iron fraction for p+Fe 2comp assumption) Assuming 2-comp. (p+Fe) primaries Present result (●) Fe frac.:14 % above 1019eV +16 –14 cf. Present data interpreted by AIRES+SIBYLL Fe frac.: 78 % above 1019eV +22 –15 Akeno 1km2 (A1) From: rm (600) vs. S(600) relationship Hayashida et al. ’95 (preliminary re-interpretation by MC) Haverah Park: Ave et al. ’03 Volcano Ranch: Dova et al. (present conf.) HiRes: Archbold et al. (present conf.)

ρµ(600) vs. E0

Analysis & Simulation Dataset (13 December 1995 – 31 December 2002) E0≥1019eV estimated by S(600) E0[eV]=2x1017S(600) for θ=0º Zenith angle: q≤36º Good fitting on core location & arrival direction (n hit ≥ 6; χ2 cuts) Requiring ≥2 muon detectors in R=800m–1600m from core ⇒ rm(1000) determined by fitting with LDM (~40% error by MC) Statistics 133 events above 1019eV 25 events above 1019.5eV Simulations (incl. detector configuration & analysis process) Proton / iron primaries AIRES code +QGSJET model gamma-ray primaries UHE gamma-ray interaction with geomagnetic field (Significant effect working above ~3x1019eV) Implemented with MC code developed by Stanev &Vankov Shower in atmosphere is followed by AIRES+QGSJET

Analysis Dataset (13 December 1995 – 31 December 2002) E0 ≥1019eV Zenith angle: q≤36º Normal event quality cuts ≥2 muon detectors in R=800m–1600m ⇒ rm(1000) Statistics 129 events above 1019eV 19 events above 1019.5eV 5 events above 1020eV