Genetic simplex model: practical

Slides:



Advertisements
Similar presentations
Bivariate analysis HGEN619 class 2007.
Advertisements

Fitting Bivariate Models October 21, 2014 Elizabeth Prom-Wormley & Hermine Maes
Elizabeth Prom-Wormley & Hermine Maes
Assortative mating (Falconer & Mackay: chapter 10) Sanja Franic VU University Amsterdam 2012.
Multivariate Mx Exercise D Posthuma Files: \\danielle\Multivariate.
Outline: 1) Basics 2) Means and Values (Ch 7): summary 3) Variance (Ch 8): summary 4) Resemblance between relatives 5) Homework (8.3)
Path Analysis Danielle Dick Boulder Path Analysis Allows us to represent linear models for the relationships between variables in diagrammatic form.
Multivariate Analysis Nick Martin, Hermine Maes TC21 March 2008 HGEN619 10/20/03.
Multivariate Genetic Analysis: Introduction(II) Frühling Rijsdijk & Shaun Purcell Wednesday March 6, 2002.
Extended sibships Danielle Posthuma Kate Morley Files: \\danielle\ExtSibs.
Developmental models. Multivariate analysis choleski models factor models –y =  f + u genetic factor models –P j = h G j + c C j + e E j –common pathway.
Multiple raters March 7 th, 2002 Boulder, Colorado John Hewitt.
ACDE model and estimability Why can’t we estimate (co)variances due to A, C, D and E simultaneously in a standard twin design?
Univariate Analysis in Mx Boulder, Group Structure Title Type: Data/ Calculation/ Constraint Reading Data Matrices Declaration Assigning Specifications/
Multivariate Analysis Hermine Maes TC19 March 2006 HGEN619 10/20/03.
Gene x Environment Interactions Brad Verhulst (With lots of help from slides written by Hermine and Liz) September 30, 2014.
Regressing SNPs on a latent variable Michel Nivard & Nick Martin.
Path Analysis Frühling Rijsdijk SGDP Centre Institute of Psychiatry King’s College London, UK.
Mx Practical TC18, 2005 Dorret Boomsma, Nick Martin, Hermine H. Maes.
Introduction to Multivariate Genetic Analysis Kate Morley and Frühling Rijsdijk 21st Twin and Family Methodology Workshop, March 2008.
Path Analysis Frühling Rijsdijk. Biometrical Genetic Theory Aims of session:  Derivation of Predicted Var/Cov matrices Using: (1)Path Tracing Rules (2)Covariance.
Raw data analysis S. Purcell & M. C. Neale Twin Workshop, IBG Colorado, March 2002.
Path Analysis HGEN619 class Method of Path Analysis allows us to represent linear models for the relationship between variables in diagrammatic.
Standard genetic simplex models in the classical twin design with phenotype to E transmission Conor Dolan & Janneke de Kort Biological Psychology, VU 1.
Process of Genetic Epidemiology Migrant Studies Familial AggregationSegregation Association StudiesLinkage Analysis Fine Mapping Cloning Defining the Phenotype.
Continuously moderated effects of A,C, and E in the twin design Conor V Dolan & Sanja Franić (BioPsy VU) Boulder Twin Workshop March 4, 2014 Based on PPTs.
Introduction to Multivariate Genetic Analysis (2) Marleen de Moor, Kees-Jan Kan & Nick Martin March 7, 20121M. de Moor, Twin Workshop Boulder.
Cholesky decomposition May 27th 2015 Helsinki, Finland E. Vuoksimaa.
Correlated characters Sanja Franic VU University Amsterdam 2008.
Mx modeling of methylation data: twin correlations [means, SD, correlation] ACE / ADE latent factor model regression [sex and age] genetic association.
Mx Practical TC20, 2007 Hermine H. Maes Nick Martin, Dorret Boomsma.
Introduction to Multivariate Genetic Analysis Danielle Posthuma & Meike Bartels.
March 7, 2012M. de Moor, Twin Workshop Boulder1 Copy files Go to Faculty\marleen\Boulder2012\Multivariate Copy all files to your own directory Go to Faculty\kees\Boulder2012\Multivariate.
Multivariate Genetic Analysis (Introduction) Frühling Rijsdijk Wednesday March 8, 2006.
Slides: faculty/sanja/2016/Moderating_covariances_IQ_SES/Slides/Moderating_covariances_practical.
Categorical Data HGEN
Extended Pedigrees HGEN619 class 2007.
Department of Psychiatry, Washington University School of Medicine
Multivariate Analysis
Bivariate analysis HGEN619 class 2006.
Univariate Twin Analysis
Introduction to Multivariate Genetic Analysis
Fitting Univariate Models to Continuous and Categorical Data
Re-introduction to openMx
Gene-Environment Interaction & Correlation
Heterogeneity HGEN619 class 2007.
MRC SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience
Path Analysis Danielle Dick Boulder 2008
Can resemblance (e.g. correlations) between sib pairs, or DZ twins, be modeled as a function of DNA marker sharing at a particular chromosomal location?
Behavior Genetics The Study of Variation and Heredity
Univariate modeling Sarah Medland.
Continuously moderated effects of A,C, and E in the twin design
in the classical twin design
Pak Sham & Shaun Purcell Twin Workshop, March 2002
(Re)introduction to Mx Sarah Medland
Sarah Medland faculty/sarah/2018/Tuesday
p(A) = p(AA) + ½ p(Aa) p(a) = p(aa)+ ½ p(Aa)
moderation model common pathway model cross-lagged model
Getting more from multivariate data: Multiple raters (or ratings)
Lucía Colodro Conde Sarah Medland & Matt Keller
Simplex Model Practical
Slides: faculty/sanja/Boulder_2012/Moderating_covariances_IQ_SES/Slides.
BOULDER WORKSHOP STATISTICS REVIEWED: LIKELIHOOD MODELS
ACE estimates under different sample sizes
Multivariate Genetic Analysis
Multivariate Genetic Analysis: Introduction
Heritability of Subjective Well-Being in a Representative Sample
Heritability of the Specific Cognitive Ability of Face Perception
Rater Bias & Sibling Interaction Meike Bartels Boulder 2004
Presentation transcript:

Genetic simplex model: practical Sanja Franic, Conor Dolan

Practical: estimate the genetic and environmental contributions to temporal stability and change in full-scale IQ measured at four time points (mean ages 5.5, 6.8, 9.7, 12.2, SDs .3, .19, .43, .24) N = 562 twin pairs (261 MZ, 301 DZ) The proportions of observed FSIQ data: 0.812, 0.295, 0.490, 0.828 (MZ twin 1) 0.812, 0.295, 0.490, 0.828 (MZ twin 2) 0.774, 0.379, 0.598, 0.797 (DZ twin1) 0.774, 0.379, 0.598, 0.797 (DZ twin 2)

Models Saturated Model - estimate means (subject to twin1-twin2 equality constraints), variances and covariances IQ11 IQ21 IQ31 IQ41 IQ12 IQ22 IQ32 IQ42 var1 cov21 var2 cov31 cov32 var3 cov41 cov42 cov43 var4 cov51 cov52 cov53 cov54 var5 cov61 cov62 cov63 cov64 cov65 var6 IQ23 cov71 cov72 cov73 cov74 cov75 cov76 var7 IQ24 cov81 cov82 cov83 cov84 cov85 cov86 cov87 var8 different over MZ & DZ IQ11 IQ21 IQ31 IQ41 IQ12 IQ22 IQ32 IQ42 mean m1 m2 m3 m4

Models Saturated Model - estimate means (subject to twin1-twin1 equality constraints), variances and covariances IQ11 IQ21 IQ31 IQ41 IQ12 IQ22 IQ32 IQ42 var1 cov21 var2 cov31 cov32 var3 cov41 cov42 cov43 var4 cov51 cov52 cov53 cov54 var5 cov61 cov62 cov63 cov64 cov65 var6 IQ23 cov71 cov72 cov73 cov74 cov75 cov76 var7 IQ24 cov81 cov82 cov83 cov84 cov85 cov86 cov87 var8 different over MZ & DZ IQ11 IQ21 IQ31 IQ41 IQ12 IQ22 IQ32 IQ42 mean m1 m2 m3 m4 How many parameters?

Models Saturated Model - estimate means (subject to twin1-twin1 equality constraints), variances and covariances IQ11 IQ21 IQ31 IQ41 IQ12 IQ22 IQ32 IQ42 var1 cov21 var2 cov31 cov32 var3 cov41 cov42 cov43 var4 cov51 cov52 cov53 cov54 var5 cov61 cov62 cov63 cov64 cov65 var6 IQ23 cov71 cov72 cov73 cov74 cov75 cov76 var7 IQ24 cov81 cov82 cov83 cov84 cov85 cov86 cov87 var8 ( 8*(8-1)/2 + 8 ) * 2 different over MZ & DZ IQ11 IQ21 IQ31 IQ41 IQ12 IQ22 IQ32 IQ42 mean m1 m2 m3 m4 How many parameters?

Models Saturated Model - estimate means (subject to twin1-twin1 equality constraints), variances and covariances IQ11 IQ21 IQ31 IQ41 IQ12 IQ22 IQ32 IQ42 var1 cov21 var2 cov31 cov32 var3 cov41 cov42 cov43 var4 cov51 cov52 cov53 cov54 var5 cov61 cov62 cov63 cov64 cov65 var6 IQ23 cov71 cov72 cov73 cov74 cov75 cov76 var7 IQ24 cov81 cov82 cov83 cov84 cov85 cov86 cov87 var8 ( 8*(8-1)/2 + 8 ) * 2 different over MZ & DZ IQ11 IQ21 IQ31 IQ41 IQ12 IQ22 IQ32 IQ42 mean m1 m2 m3 m4 How many parameters? 4

Models Saturated Model - estimate means (subject to twin1-twin1 equality constraints), variances and covariances IQ11 IQ21 IQ31 IQ41 IQ12 IQ22 IQ32 IQ42 var1 cov21 var2 cov31 cov32 var3 cov41 cov42 cov43 var4 cov51 cov52 cov53 cov54 var5 cov61 cov62 cov63 cov64 cov65 var6 IQ23 cov71 cov72 cov73 cov74 cov75 cov76 var7 IQ24 cov81 cov82 cov83 cov84 cov85 cov86 cov87 var8 ( 8*(8-1)/2 + 8 ) * 2 different over MZ & DZ IQ11 IQ21 IQ31 IQ41 IQ12 IQ22 IQ32 IQ42 mean m1 m2 m3 m4 How many parameters? 76 4

Models Saturated Model - estimate means (subject to twin1-twin1 equality constraints), variances and covariances IQ11 IQ21 IQ31 IQ41 IQ12 IQ22 IQ32 IQ42 var1 cov21 var2 cov31 cov32 var3 cov41 cov42 cov43 var4 cov51 cov52 cov53 cov54 var5 cov61 cov62 cov63 cov64 cov65 var6 IQ23 cov71 cov72 cov73 cov74 cov75 cov76 var7 IQ24 cov81 cov82 cov83 cov84 cov85 cov86 cov87 var8 ( 8*(8-1)/2 + 8 ) * 2 different over MZ & DZ IQ11 IQ21 IQ31 IQ41 IQ12 IQ22 IQ32 IQ42 mean m1 m2 m3 m4 How many parameters? 76 4

Models SMZ = SA+SC+SE SA+SC SA+SC SA+SC+SE SDZ = SA+SC+SE .5SA+SC 2) ACE Cholesky Model - depicting only A component to avoid clutter - means subject to same equality constraints as in the saturated model SMZ = SA+SC+SE SA+SC SA+SC SA+SC+SE SDZ = SA+SC+SE .5SA+SC .5SA+SC SA+SC+SE

Models SA = DADAt DA = d11 0 0 0 d21 d22 0 0 d31 d32 d33 0 2) ACE Cholesky Model - depicting only A component to avoid clutter - means subject to same equality constraints as in the saturated model SA = DADAt DA = d11 0 0 0 d21 d22 0 0 d31 d32 d33 0 d41 d42 d43 d44

Models SA = DADAt DA = d11 0 0 0 d21 d22 0 0 d31 d32 d33 0 2) ACE Cholesky Model - depicting only A component to avoid clutter - means subject to same equality constraints as in the saturated model SA = DADAt DA = d11 0 0 0 d21 d22 0 0 d31 d32 d33 0 d41 d42 d43 d44 How many parameters?

Models SA = DADAt DA = d11 0 0 0 d21 d22 0 0 d31 d32 d33 0 2) ACE Cholesky Model - depicting only A component to avoid clutter - means subject to same equality constraints as in the saturated model SA = DADAt DA = d11 0 0 0 d21 d22 0 0 d31 d32 d33 0 d41 d42 d43 d44 How many parameters? 34

Models SMZ = SA+SC+SE SA+SC SA+SC SA+SC+SE SDZ = SA+SC+SE .5SA+SC 3) Simplex Model - the genetic A simplex: 3 + 4 = 7 parameters SMZ = SA+SC+SE SA+SC SA+SC SA+SC+SE SDZ = SA+SC+SE .5SA+SC .5SA+SC SA+SC+SE SA = (I-BA) YA (I-BA) t + QA

Models SA = (I-BA) YA (I-BA) t + QA 3) Simplex Model s2z1 s2z2 s2z3 s2z2 s2z3 s2z4 bA21 bA32 bA43 s2a1 s2a2 s2a3 s2a4 SA = (I-BA) YA (I-BA) t + QA

Models SMZ = SA+SC+SE SA+SC SA+SC SA+SC+SE SDZ = SA+SC+SE .5SA+SC 3) Simplex Model - the genetic C simplex: 3 + 4 = 7 parameters SMZ = SA+SC+SE SA+SC SA+SC SA+SC+SE SDZ = SA+SC+SE .5SA+SC .5SA+SC SA+SC+SE SC = (I-BC) YC (I-BC) t + QC

Models SMZ = SA+SC+SE SA+SC SA+SC SA+SC+SE SDZ = SA+SC+SE .5SA+SC 3) Simplex Model - the genetic E model: 4 parameters SMZ = SA+SC+SE SA+SC SA+SC SA+SC+SE SDZ = SA+SC+SE .5SA+SC .5SA+SC SA+SC+SE SE = QE

faculty/sanja/2016/Simplex/Practical/simplexPractical.R

Saturated model: Rmz [1,] 1.000 0.650 0.523 0.409 0.769 0.510 0.482 0.455 [2,] 0.650 1.000 0.748 0.608 0.655 0.696 0.665 0.582 [3,] 0.523 0.748 1.000 0.775 0.609 0.745 0.840 0.757 [4,] 0.409 0.608 0.775 1.000 0.549 0.723 0.747 0.799 [5,] 0.769 0.655 0.609 0.549 1.000 0.572 0.550 0.613 [6,] 0.510 0.696 0.745 0.723 0.572 1.000 0.782 0.658 [7,] 0.482 0.665 0.840 0.747 0.550 0.782 1.000 0.760 [8,] 0.455 0.582 0.757 0.799 0.613 0.658 0.760 1.000 Rdz [1,] 1.000 0.603 0.475 0.471 0.641 0.397 0.201 0.248 [2,] 0.603 1.000 0.661 0.673 0.298 0.481 0.317 0.396 [3,] 0.475 0.661 1.000 0.737 0.283 0.374 0.483 0.469 [4,] 0.471 0.673 0.737 1.000 0.258 0.346 0.368 0.501 [5,] 0.641 0.298 0.283 0.258 1.000 0.481 0.361 0.345 [6,] 0.397 0.481 0.374 0.346 0.481 1.000 0.627 0.635 [7,] 0.201 0.317 0.483 0.368 0.361 0.627 1.000 0.707 [8,] 0.248 0.396 0.469 0.501 0.345 0.635 0.707 1.000 5.5y 6.8y 9.7y 12.2y 0.769 0.696 0.840 0.799 MZ FSIQ correlation (FIML estimates) 0.641 0.481 0.483 0.501 DZ FSIQ correlation (FIML estimates)

ACE Cholesky model: RA_est 5.5y 6.8y 9.7y 12.2y 1.000 0.939 0.909 0.802 0.939 1.000 0.997 0.959 0.909 0.997 1.000 0.978 0.802 0.959 0.978 1.000 RC_est 5.5y 6.8y 9.7y 12.2y 1.000 0.610 0.295 0.388 0.610 1.000 0.609 0.651 0.295 0.609 1.000 0.767 0.388 0.651 0.767 1.000 RE_est 5.5y 6.8y 9.7y 12.2y 1.000 0.107 -.057 0.020 0.107 1.000 0.233 0.150 -.057 0.233 1.000 0.126 0.020 0.150 0.126 1.000

SA = (I-BA) YA (I-BA) t + QA Simplex model: YA [1,] 62.926 0.000 0 0 [2,] 0.000 32.775 0 0 [3,] 0.000 0.000 0 0 [4,] 0.000 0.000 0 0 BA [1,] 0.000 0.000 0.000 0 [2,] 1.191 0.000 0.000 0 [3,] 0.000 1.058 0.000 0 [4,] 0.000 0.000 0.913 0 QA (fixed) [1,] 0 0 0 0 [2,] 0 0 0 0 [3,] 0 0 0 0 [4,] 0 0 0 0 SA = (I-BA) YA (I-BA) t + QA

SC = (I-BC) YC (I-BC) t + QC Simplex model: YC [1,] 103.218 0.000 0.00 0.000 [2,] 0.000 15.587 0.00 0.000 [3,] 0.000 0.000 38.31 0.000 [4,] 0.000 0.000 0.00 23.119 BC [1,] 0.000 0.000 0.000 0 [2,] 0.468 0.000 0.000 0 [3,] 0.000 0.614 0.000 0 [4,] 0.000 0.000 0.691 0 QC (fixed) [1,] 0 0 0 0 [2,] 0 0 0 0 [3,] 0 0 0 0 [4,] 0 0 0 0 SC = (I-BC) YC (I-BC) t + QC

SE = QE Simplex model: YE (fixed) [1,] 0 0 0 0 [2,] 0 0 0 0 [1,] 0 0 0 0 [2,] 0 0 0 0 [3,] 0 0 0 0 [4,] 0 0 0 0 BE (fixed) QE [1,] 48.95 0.000 0.000 0.000 [2,] 0.00 56.691 0.000 0.000 [3,] 0.00 0.000 44.331 0.000 [4,] 0.00 0.000 0.000 44.897 SE = QE

Simplex model: Standardized variance components 5.5y 6.8y 9.7y 12.2y h2 0.293 0.562 0.584 0.550 Increasing c2 0.480 0.176 0.226 0.233 Decreasing e2 0.228 0.261 0.190 0.217 About constant

Simplex model: Phenotypic covariance between age 9.7 and 12.2 equals 123.271 Contributions of A to 123.271 is 77.4% Contributions of A to 123.271 is 22.6% Contributions of E to 123.271 is 0% Conclude? > round(SA_est/Sph_est,3) [1,] 0.293 0.608 0.728 0.779 [2,] 0.608 0.562 0.846 0.879 [3,] 0.728 0.846 0.584 0.774 [4,] 0.779 0.879 0.774 0.550 > round(SC_est/Sph_est,3) [1,] 0.480 0.392 0.272 0.221 [2,] 0.392 0.176 0.154 0.121 [3,] 0.272 0.154 0.226 0.226 [4,] 0.221 0.121 0.226 0.233 > round(SE_est/Sph_est,3) [1,] 0.228 0.000 0.00 0.000 [2,] 0.000 0.261 0.00 0.000 [3,] 0.000 0.000 0.19 0.000 [4,] 0.000 0.000 0.00 0.217 Standardized variance components 5.5y 6.8y 9.7y 12.2y h2 0.293 0.562 0.584 0.550 Increasing c2 0.480 0.176 0.226 0.233 Decreasing e2 0.228 0.261 0.190 0.217 About constant