 s s 2ph = Z1Z2 m/E m = m1m2 / (m1+m2), E in keV

Slides:



Advertisements
Similar presentations
 s(E) = S(E) e–2ph E-1 s Laboratory for Underground
Advertisements

Carlo Broggini, INFN-Padova Nuclear Burning in Stars (E star ) ( E ) = S(E) e –2 E -1 2 cm m m m m Astrophysical Factor Gamow Factor Reaction Rate(star)
Nuclear Burning in Stars (E star ) ( E ) = S(E) e –2 E -1 Reaction Rate(star) (E) (E) dE Gamow Peak Maxwell Boltzmann Extrap.Meas. LUNA results Men in.
LUNALUNA Nucleosintesi stellare (E star ) (E) = S(E)/E e –2 2 cm m m m m Fattore astrofisico Interazioni(stella) (E) (E) dE Picco di Gamow Maxwell Boltzmann.
NuPECC - Milan Present and future of Laboratory Underground Nuclear Astrophysics Alba Formicola - Status of the D(, ) 6 Li measurement -Status of.
Underground Measurement of the 17O+p Reactions
Carlo Broggini, INFN-Padova Nuclear Burning in Stars  (E star )  ( E ) = S(E) e –2   E -1 2       m  m   m   m 
Classical novae, type I x-ray bursts, and ATLAS Alan Chen Department of Physics and Astronomy McMaster University.
Introduction to nuclear physics Hal. Nucleosynthesis Stable nuclei.
12C(p,g)13N g III. Nuclear Reaction Rates 12C 13N Nuclear reactions
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
I NSTITUTE FOR S TRUCTURE AND N UCLEAR A STROPHYSICS N UCLEAR S CIENCE L ABORATORY Research:Stellar Burning – nuclear reactions with stable beams Explosive.
Text optional: Institutsname Prof. Dr. Hans Mustermann Mitglied der Leibniz-Gemeinschaft Direct measurement of the d( α, γ ) 6 Li cross-section.
The LUNA experiment: direct measurement of thermonuclear cross sections of astrophysical interest Alessandra Guglielmetti Universita’ degli Studi di Milano.
Nuclear Astrophysics with the PJ Woods, University of Edinburgh.
Stellar Fuel, Nuclear Energy and Elements How do stars shine? E = mc 2 How did matter come into being? Big bang  stellar nucleosynthesis How did different.
Lecture 2: Formation of the chemical elements Bengt Gustafsson: Current problems in Astrophysics Ångström Laboratory, Spring 2010.
Gianluca Imbriani Physics Department of University of Naples Federico II, Italian National Institute of Nuclear Physics (INFN) and Joint Institute of Nuclear.
Searching for the Low-Energy Resonances in the 12 C( 12 C,n) 23 Mg Reaction Cross Section Relevant for S-Process Nucleosynthesis Brian Bucher University.
Zagreb IP: Experimental nuclear physics inputs for thermonuclear runaway - NuPITheR Neven Soić, Ru đ er Bošković Institute, Zagreb, Croatia EuroGENESIS.
Nuclear structure and fundamental interactions Solid state physics Material irradiation Micrometeorite research and study Astrophysics Nuclear astrophysics.
ESF Workshop on The future of stable beams in Nuclear Astrophysics, Athens, Dec , 2007 Stable ion beams for nuclear astrophysics: Where do we stand.
Lesson 13 Nuclear Astrophysics. Elemental and Isotopic Abundances.
What temperature would provide a mean kinetic energy of 0.5 MeV? By comparison, the temperature of the surface of the sun  6000 K.
ALNA- Accelerator Laboratory for Nuclear Astrophysics Underground Heide Costantini University of Notre Dame, IN, USA INFN, Genova, Italy.
 ( E ) = S(E) e –2   E -1 2      m  m   m   m   Reaction Rate(star)    (E)  (E) dE Gamow Peak  Maxwell Boltzmann.
 ( E ) = S(E) e –2   E -1 2       m  m   m   m   Reaction Rate(star)    (E)  (E) dE Gamow Peak  Maxwell Boltzmann.
Institute for Structure and Nuclear Astrophysics Nuclear Science Laboratory E381: Search of potential resonances in the 12 C+ 12 C fusion reaction using.
Massive Star Evolution overview Michael Palmer. Intro - Massive Stars Massive stars M > 8M o Many differences compared to low mass stars, ex: Lifetime.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron cross sections for reading the abundance history Michael Heil Forschungszentrum Karlsruhe.
Selected Topics in Astrophysics
Experimental Nuclear Astrophysics: Key aspects & Open problems Marialuisa Aliotta School of Physics University of Edinburgh Nuclear Physics Autumn Retreat.
1/38 Laboratory Underground Nuclear Astrophysics The D( 4 He,  ) 6 Li reaction at LUNA and the Big Bang Nucleosynthesis Carlo Gustavino For the LUNA collaboration.
L’esperimento LUNA- CdS MI luglio 2012 Alessandra Guglielmetti Università degli Studi di Milano e INFN, Milano, ITALY Laboratory Underground Nuclear Astrophysics.
NUCLEAR REACTIONS OF ASTROPHYSICAL INTEREST AT LUNA D. Trezzi (for the LUNA collaboration) Università degli Studi di Milano | INFN – New Vistas in Low-Energy.
The LUNA experiment at Gran Sasso Laboratory: studying stars by going underground Alessandra Guglielmetti Università degli Studi di Milano and INFN, Milano,
Nuclear Physics in Astrophysics V, Eilat 3-8 April 2011 Hydrogen-burning reactions at astrophysically relevant energies Laboratory Underground Nuclear.
22Ne(a,n)25Mg status and perspectives (for an underground experiment)
David Mountford University of Edinburgh
University of Colorado
L’esperimento LUNA- CdS MI giugno 2013
Nuclear Reaction Studies for Explosive Nuclear Astrophysics
Stato dell’esperimento LUNA e del progetto LUNA MV- CdS MI luglio 2017
György Gyürky Institute for Nuclear Research (Atomki)
Stars, Accelerators and Underground Laboratories
Why going underground g-background
Neven Soić, Ruđer Bošković Institute, Zagreb, Croatia
Zs. Fülöp ATOMKI, Debrecen, Hungary
The scientific program for the first five years of LUNA-MV
the s process: messages from stellar He burning
Stato dell'esperimento LUNA
Stellar Evolution Pressure vs. Gravity.
Star Formation Nucleosynthesis in Stars
Laboratory for Underground Nuclear Astrophysics
status and perspectives
Alessandra Guglielmetti Universita’ degli Studi di Milano and
György Gyürky Institute of Nuclear Research (Atomki) Debrecen, Hungary
12C(p,)13N Nuclear Reaction Rates  12C 13N Nuclear reactions
Neutron production and monitoring at the new LUNA-MV facility
The D(4He,)6Li reaction at LUNA and the Big Bang Nucleosynthesis
Stato dell’esperimento LUNA e del progetto LUNA MV- CdS MI giugno 2015
 s 2ph = Z1Z2 m/E m = m1m2 / (m1+m2), E in keV
Carbon, From Red Giants to White Dwarfs
Nucleosynthesis 12 C(
(g,z) Breakup Experiments Charged Particles in the Final State
Study of the resonance states in 27P by using
Study of the resonance states in 27P by using
 s(E) = S(E) e–2ph E-1 s Nuclear Burning in Stars s(Estar) s
Elastic alpha scattering experiments
Institut de Physique Nucléaire Orsay, France
Presentation transcript:

 s s 2ph = 31.29 Z1Z2 m/E m = m1m2 / (m1+m2), E in keV LUNA: the scientific program with the new 3.5 MV accelerator under Gran Sasso Stellar Energy+Nucleosynthesis Hydrogen Burning s(Estar) with Estar << ECoulomb Carlo Broggini INFN-Padova s(E) = S(E) e–2ph E-1 2ph = 31.29 Z1Z2 m/E m = m1m2 / (m1+m2), E in keV  Reaction Rate(star)  F(E) s(E) dE s Gamow Peak Extrap. Meas. S(E) Maxwell Boltzmann s

1400 m of dolomite rock, CaMg(CO3)2, (~3800 m w.e.) 1979 Gran Sasso Lab proposed by A. Zichichi 1989 first underground experiment ON 1400 m of dolomite rock, CaMg(CO3)2, (~3800 m w.e.) Surf.: 17 800 m2, Vol.: 180 000 m3, Ventilation: 1 vol / 3.5 hours (Rn in air 20-80 Bq m-3) Muon flux: 1.1 m-2h-1, 6 orders of magnitude reduction Neutron flux, mainly from (,n) : 2.92 10-6 cm-2s-1 (0-1 keV), 0.86 10-6 cm-2s-1 (> 1 keV), 3 orders of magnitude reduction Gamma rays: only 1 order of magnitude reduction, but with thick shield (no muon activation) about 5 orders of magnitude in the region of natural radioactivity and 4-5 orders above 3.2 MeV without any shield (gamma rays due to n-interaction) Alpha particles: ~ factor 15 background reduction below 2 MeV in silicon detectors

Laboratory for Underground Nuclear Astrophysics: LUNA 50 kV 400 kV 3.5 MV

e Hydrogen burning in the Sun @15*106 degrees: 6*1011 kg/s H He +0.7% MH E e 4H He +2e+ +2 +26.7 MeV 3He burning in the p-p chain Resonance @ solar Gamow peak? Activation=prompt gamma no monopole contribution to s s at low energy with 4% error

AGB stars (~30-100 T6), Nova nucleosynthesis (~100-400 T6) and BBN LUNA beyond the Sun: isotope production in the hydrogen burning shell of AGB stars (~30-100 T6), Nova nucleosynthesis (~100-400 T6) and BBN Nova Cigni 1992

A new accelerator, LUNA-MV, will be installed next year in Hall B of LNGS (ex Icarus). New LUNA hall: 27 x 12.5 x 5 m3

The accelerator and the neutron shielding 1H+ (TV: 0.3 – 0.5 MV): 500 μA - inline Cockcroft Walton accelerator - TERMINAL VOLTAGE: 0.2 – 3.5 MV - Precision of terminal voltage reading: 350 V - Beam energy reproducibility: 0.01% TV - Beam energy stability: 0.001% TV / h - Beam current stability: < 5% / h 1H+ (TV: 0.5 – 3.5 MV): 1000 μA 4He+ (TV: 0.3 – 0.5 MV): 300 μA He 4He+ (TV: 0.5 – 3.5 MV): 500 μA 12C+ (TV: 0.3 – 0.5 MV): 100 μA C 12C+ (TV: 0.5 – 3.5 MV): 150 μA 12C++ (TV: 0.5 – 3.5 MV): 100 μA 80 cm thick concrete shielding calculated by GEANT4 & MCNP En = 5.6 MeV, 2*103 n/s, isotropic MCNP: Fn = 1.38*10-7 n/(cm2 s) GEANT4: Fn = 3.40*10-7 n/(cm2 s) Fn(LNGS) = 3*10-6 n/(cm2 s)

The scientific program for the first five years of LUNA-MV From hydrogen burning to helium and carbon burning Nucleosynthesis: from p-p chain, CNO, NeNa and MgAl cycles to the region beyond Fe Stellar evolution: from Main Sequence stars to thermonuclear supernovae and core collapse supernovae

14N(p,g)15O 278 7556 1/2 + The bottleneck reaction of the CNO cycle already studied by LUNA (2004-11) 7297 7276 7/2 + 14N+p 13C (p,g) 14N 15O b+ (p,a) 12C 13N 15N 6859 5/2 + -21 6793 3/2 + - 504 6176 3/2 - 5241 5/2 + 5183 1/2 + (p,g) 16O 15O 1/2 - LUNA: St(0)=1.57±0.13 keV b Sgs(0)=0.20±0.05 keV b Adelberger et al. 2011 : St(0)=1.66±0.12 keV b Sgs(0)=0.27±0.05 keV b Q. Li et al. 2016, study over a wide energy region of 6.79 MeV and g.s. transitions: Sgs(0)=0.42±0.04 +009 -0.19 keV b It is mandatory to have a low background measurement over a wide energy region

cno = LF(S1,14,C+Ncore) The solar abundance problem new (2009) spectroscopic determination of the solar photosphere, in particular C, N and O: 30-40% lower than before SSM predictions disagree with heliosysmology results Conditions in the solar core, in particular the temperature profile, are determined by pp-chain. CNO luminosity ~1% cno = LF(S1,14,C+Ncore) probe of the (C+N) abundance in the Sun core Borexino: cno< 7.7*108 cm-2s-1 From A.Serenelli, Topical Issue on underground nuclear astrophysics and solar neutrinos EPJA 52(2016): Intrinsic error on the (C+N) prediction of 11%, 2.6% from heavy element settling and 10.6% from nuclear cross sections (S17 and S114, ~7.5% each). CNO neutrino flux with 10% uncertainty C+N abundance in the Sun core with ~15% uncertainty

14N(p, g)15O @LUNA MV: day zero experiment to verify accelerator and solid target set-up + to reduce the error on S114 Set-up: several gamma ray detectors to study the angular distribution (if necessary, there is space for an array). Expected beam time: ~6 months

12C+ 12C the trigger of Carbon burning * The lower stellar mass bound Mup for the Carbon ignition: white dwarf (+Nova or thermonuclear supernova) or massive O-Ne WD or core collapse supernova (+neutron star or black hole) * Protons and alpha injection for nucleosynthesis in massive stars Coulomb barrier: EC= 6.7 MeV 12C+12C 20Ne + a Q=4.62 MeV 12C+12C 23Na + p Q=2.24 MeV 12C+12C 24Mg + g Q=13.93 MeV negligible 12C+12C 23Mg + n Q=-2.62 MeV endothermic 12C+12C 16O + 2a Q=-0.12 MeV three particles 12C+12C 16O + 8Be Q=-0.21 MeV higher Coulomb barrier

12C+12C 20Ne + ai + gi 12C+12C 23Na + pi + gi Energy (CM) region of interest: 0.9-3.4 MeV explosive C-burning from 0.7 MeV Relevant energy range in stars 12C+12C 20Ne + ai + gi 12C+12C 23Na + pi + gi Eg = 440 keV Detection: particles (Silicon detectors, ΔE-E telescopes, ionization chambers) and gammas (from the first excited state, Ge detectors) Eg = 1634 keV Main advantage deep underground @LNGS: gamma ray suppression in a shielded detector (~5 orders of magnitude)

Beam induced bck: 1H and 2H in the target T. Spillane et al., Phys Rev Lett. 98 (2007) 122501 Several resonances spaced by 300-500 keV, typical width G≈10 keV Improvements @LNGS: With a shielded Ge detector bck of 52 cpd 425-455 keV and 1 cpd 1619-1649 keV Minimum energy 1955 for the proton channel (bck limited) and 1605 keV for the alpha channel (time limited). All this with 1mm thick carbon target, 5 keV spacing and 30% stat. error) Expected beam time: ~2.5 years Beam induced bck: 1H and 2H in the target Gamma detection: 2H(12C,p1 γ)13C and 1H(12C,γ )13N Particle detection (at backward angles): 2H(12C,2H)12C + 12C(d,p)13C Heating at high temperature is able to reduce the contamination D educe

The neutrons for the s-process: nucleosynthesis of half of all elements heavier than Fe (e.g. W, Pd, La, Nd) Two components were identified and connected to stellar sites: Main s-process ~90<A<210 Weak s-process A<~90 TP-AGB stars massive stars > 10 M⊙ shell H-burning He-flash T9 ~ 0.1 K 0.25 ≤ T9 ~ 0.4 K 107-108 cm-3 1010-1011 cm-3 13C(a,n)16O 22Ne(a,n)25Mg core He-burning shell C-burning 3-3.5·108 K ~109 K 106 cm-3 1011-1012 cm-3 22Ne(a,n)25Mg 13C(a,n) 22Ne(a,n)

The LUNA collaboration 3He (3He,2p)4He: s down to 16 keV no resonance within the solar Gamow Peak 14N(p,g)15O: s down to 70 keV cno reduced by  2 with 8% error Sun core metallicity Globular cluster age increased by 0.7-1 Gy More carbon at the surface of AGB stars First 5 years of LUNA-MV (first run 2019): The LUNA collaboration 14N(p,g)15O: the bottleneck reaction of the CNO cycle in connection with the solar abundance problem 12C + 12C: the trigger of carbon burning in star, White Dwarf (+Nova or thermonuclear SN) or O-Ne WD or core collapse SN (+neutron star or black hole)

12C(a,g)16O: the flagship reaction of the next 5 year plan Sources of the neutrons responsible for the S-process: 50% of the elements beyond Iron (neutron capture followed by beta decay): 13C(a,n)16O: isotopes with A≥90 during H-burning in shell of low mass AGB stars (4 solar masses) 22Ne(a,n)25Mg: isotopes with A‹90 during He burning in high mass AGB stars and during He and C burning in massive stars 12C(a,g)16O: the flagship reaction of the next 5 year plan

The LUNA Collaboration L. Csedreki, G.F. Ciani*, L. Di Paolo, A. Formicola, I. Kochanek, M. Junker| INFN LNGS /*GSSI, Italy D. Bemmerer, K. Stoeckel , M. Takacs, | HZDR Dresden, Germany C. Broggini, A. Caciolli, R. Depalo, P. Marigo, R. Menegazzo, D. Piatti | Università di Padova and INFN Padova, Italy C. Gustavino | INFN Roma1, Italy Z. Elekes, Zs. Fülöp, Gy. Gyurky, T. Szucs | MTA-ATOMKI Debrecen, Hungary M. Lugaro | Monarch University Budapest, Hungary O. Straniero | INAF Osservatorio Astronomico di Collurania, Teramo, Italy F. Cavanna, P. Corvisiero, F. Ferraro, P. Prati, S. Zavatarelli | Università di Genova and INFN Genova, Italy A. Guglielmetti| Università di Milano and INFN Milano, Italy A. Best, A. Di Leva, G. Imbriani, | Università di Napoli and INFN Napoli, Italy G. Gervino | Università di Torino and INFN Torino, Italy M. Aliotta, C. Bruno, T. Davinson | University of Edinburgh, United Kingdom G. D’Erasmo, E.M. Fiore, V. Mossa, F. Pantaleo, V. Paticchio, R. Perrino, L. Schiavulli, A. Valentini| Università di Bari and INFN Bari, Italy .