Infrared Polarization and Interstellar Grain Models 红外偏振与星际尘埃模型 李祺 (湘潭大学) 导师:李爱根 星际尘埃模型:简介 星际偏振对尘埃模型的限止 结果与讨论 2014年7月15-19日 大连.

Slides:



Advertisements
Similar presentations
Hydrocarbon dust in Seyfert galaxies and ULIRGs R. Mason (NOAO Gemini Science Center) G. Wright (Astronomy Technology Centre) Y. Pendleton (NASA Ames)
Advertisements

Origin and evolution of dust in galaxies Can we account for the dust in galaxies by stellar sources? Mikako Matsuura Origin’s fellow, Institute of Origins,
From diffuse to dense regions Carlos del Burgo Díaz School of Cosmic Physics Dublin Institute for Advanced Studies Seminar 14 December 2007 La Laguna The.
Dust particles and their spectra. Review Ge/Ay 132 Final report Ivan Grudinin.
To date: Observational manifestations of dust: 1.Extinction – absorption/scattering diminishes flux at wavelengths comparable to light – implies particles.
AGN Unification Viewed in the mid-IR Lei Hao Cornell University Spectra.
What can the Interstellar Extinction Curves Tell us About? Takaya Nozawa Masataka Fukugita (Kavli IPMU, University of Tokyo) 2012/08/07.
The nature of the dust and gas in the nucleus of NGC 1068.
CfA B.T. Draine: Dust in the submm1 Dust in the sub-mm or: what is  ? B. T. Draine Princeton University 2005 June 14.
16 June 2004, Winnipeg CASCA Martin -- Submillimetre Polarization1 This is a slide from Dick Bond that packs a lot of information. A lot of information.
The Central Engine of AGNs, XiAn, October 2006 Dust in Active Galactic Nuclei Aigen Li (University of Missouri-Columbia)
Jonathan Slavin Harvard-Smithsonian CfA
University of Chicago 2007 July 30 SOFIA-POL 2007 The Infrared - Millimeter Polarization Spectrum John Vaillancourt California Institute of Technology.
Jan/2005Interstellar Ices-I1 Interstellar Ices-2 Ice Inventory Protostellar Environments Energetic Processing? Laboratory Simulations New Spitzer Satellite.
Dust polarization expectations The PILOT experiment J.-Ph. Bernard CESR Toulouse Dust polarization at long wavelengths J.-Ph. Bernard, Orsay, Bpol meeting.
ISM Lecture 13 H 2 Regions II: Diffuse molecular clouds; C + => CO transition.
Infrared Observations of Novae with Subaru/COMICS and Gemini/T- ReCS Sakon, I., Sako, S., Shimonishi, T., Onaka, T. (Univ. of Tokyo) Takahashi, H. (Gunma.
1 Common Far-Infrared Properties of the Galactic Disk and Nearby Galaxies MNRAS 379, 974 (2007) Hiroyuki Hirashita Hiroyuki Hirashita (Univ. Tsukuba, Japan)
ASTR112 The Galaxy Lecture 10 Prof. John Hearnshaw 13. The interstellar medium: dust IRAS view of warm dust in plane of the Galaxy.
Lecture 14 Star formation. Insterstellar dust and gas Dust and gas is mostly found in galaxy disks, and blocks optical light.
The chemistry and physics of interstellar ices Klaus Pontoppidan Leiden Observatory Kees Dullemond (MPIA, Heidelberg) Helen Fraser (Leiden) Ewine van Dishoeck.
Brittany Griner Robin McCollum INTERSTELLAR MEDIUM.
Lecture on Cosmic Dust Takaya Nozawa (IPMU, University of Tokyo) 2011/12/19 Today’s Contents: 1) Composition of dust 2) Extinction of stellar lights by.
Constraints on small grains from ISO, Spitzer data: Towards predicting the cm-emission of PAHs L. Verstraete N. FlageyIAS, Orsay M. Compiègne.
Science with continuum data ALMA continuum observations: Physical, chemical properties and evolution of dust, SFR, SED, circumstellar discs, accretion.
Detection of the 2175Å Dust Extinction Feature at high z Junfeng Wang (Penn State/UFL) Collaborators : Jian Ge (U. of Florida), Pat Hall (Princeton U./York.
Magnetic fields in Planetary and Proto Planetary
Planetary Nebulae as a Testground of Interstellar Molecular Chemistry Tatsuhiko Hasegawa.
Dust cycle through the ISM Francois Boulanger Institut d ’Astrophysique Spatiale Global cycle and interstellar processing Evidence for evolution Sub-mm.
The Interstellar Medium. Red, White, and Blue : Nebulae.
Interstellar Extinction vs. Dust
Interstellar extinction law and its dust model in the infrared 姜碧沩 北京师范大学天文系 Group members: 高健 王舒 李爱根 etc.
IR Astronomy In Search of Grain Alignment Pierre Bastien Megan Krejny Kathleen DeWahl Terry Jay Jones University of Minnesota.
A New View of Interstellar Dust as Revealed by Recent Observations Takashi Onaka (University of Tokyo) ASTRO-F®ISASSpitzer®NASA.
Belén Maté, Miguel Jiménez-Redondo, Isabel Tanarro, Miguel Moreno, and Victor Herrero Instituto de Estructura de la Materia (IEM-CSIC), Serrano 123, 28006,
Galactic Extinction Curves and Interstellar Dust Models Nozawa, T. and Fukugita, M. (Kavli IPMU, University of Tokyo) 2012/05/08.
Cosmic Dust Enrichment and Dust Properties Investigated by ALMA Hiroyuki Hirashita ( 平下 博之 ) (ASIAA, Taiwan)
ISM & Astrochemistry Lecture 1. Interstellar Matter Comprises Gas and Dust Dust absorbs and scatters (extinguishes) starlight Top row – optical images.
Variation of the 9.7 µm Silicate Absorption Feature with Extinction in the Dense Interstellar Medium Megan M. Bagley with Dr. Jean E. Chiar, SETI Institute.
Presented by: Suklima Guha Niyogi Leiden Observatory 13/02/2013 USING INFRARED OBSERVATIONS OF CIRCUMSTELLAR DUST AROUND EVOLVED STARS TO TEST DUST FORMATION.
減光曲線から探る星間ダストの 多様性 ( Variation of interstellar dust probed by extinction curves) 野沢 貴也 (Takaya Nozawa) & 福来 正孝 (Masataka Fukugita) (Kavli IPMU, University.
Koninginnedag 2008Astro 101-8/Astrochemistry1 Astronomy Lecture 8 Astrochemistry Adwin Boogert NASA Herschel Science Center Caltech.
Peter Sarre Alessandra Candian, Markus Hammonds, Tom Kerr,
Ciro Pinto(1) J. S. Kaastra(1,2), E. Costantini(1), F. Verbunt(1,2)
On the reddening law observed for Type Ia Supernovae
Mid- Infrared Spectroscopic Properties of IR QSOs
On the Formation of Molecules on Interstellar Grains
Theodore P. Snow Nicholas Betts Meredith Drosback Veronica Bierbaum
SN 1987A: The Formation & Evolution of Dust in a Supernova Explosion
Hydrogenation of PAHs and its effect on the UIR band spectrum
星际物理与化学(大连)讨论会 Dust in the Local Group, AGNs, and High-z Universe Aigen Li (University of Missouri) 16 - July
Dust extinction, emission & polarisation in the diffuse ISM
National Astronomical Observatory of Japan
Interferometric 3D observations of LIRGs
Galactic Astronomy 銀河物理学特論 I Lecture 1-6: Multi-wavelength properties of galaxies Seminar: Draine et al. 2007, ApJ, 663, 866 Lecture: 2011/11/14.
2014/09/13 高赤方偏移クェーサー母銀河の 星間ダスト進化と減光曲線 (Evolution of interstellar dust and extinction curve in the host galaxies of high-z quasars) 野沢 貴也 (Takaya Nozawa)
Interstellar Ice Formation on Dust Grains
Dust Models for the Extinction of Type IIn SN 2010jl Jian Gao, Jun Li, B. W. Jiang Beijing Normal University , 昆明.
Gas of Planck Cold Dust Clumps
University of Minnesota
Infrared study of a star forming region, L1251B
formation of H2CO and CH3OH
(National Astronomical Observatory of Japan)
2010/12/16 Properties of interstellar and circumstellar dust as probed by mid-IR spectroscopy of supernova remnants (超新星残骸の中間赤外分光から探る星間・星周ダスト) Takaya.
2016/09/16 Properties of Interstellar Dust as Probed by Extinction Laws toward Type Ia Supernovae Takaya Nozawa (National Astronomical Observatory of Japan)
On Deuterated Polycyclic Aromatic Hydrocarbons in Space
Mikako Matsuura National Astronomical Observatory of Japan
2017/01/23 Properties of Dust Accounting for Extinction Laws toward Type Ia Supernovae (Nozawa, T. 2016, Planetary and Space Science, 133, 36) Takaya Nozawa.
Astrochemical modeling of Planck cold clump G
Dust Polarization in Galactic Clouds with PICO
Presentation transcript:

Infrared Polarization and Interstellar Grain Models 红外偏振与星际尘埃模型 李祺 (湘潭大学) 导师:李爱根 星际尘埃模型:简介 星际偏振对尘埃模型的限止 结果与讨论 2014年7月15-19日 大连

Interstellar Dust Models Any dust model  composition, size, shape, morphology, elemental depletion; Observational constraints wavelength dependent extinction  dust size; wavelength dependent polarization  dust shape, size; absorption and emission spectra  dust composition; near, mid, far-IR continuum emission  dust size; cosmic abundance (depletion)  dust composition;

Interstellar Polarization Large grains nonspherical and aligned; Small grains spherical and/or not aligned;

Interstellar Dust Models 3 key models Core-mantle model (Li & Greenberg 1997); Composite dust model (Mathis & Whiffen 1989); Silicate/graphite-PAH model (Mathis et al. 1977; Draine & Lee 1984; Li & Draine 2001; Weingartner & Draine 2001); All models consist of amorphous silicates, carbon dust, PAHs; span a wide range of grain sizes (a few Å to a few µm); all satisfy some observational constraints; Key question: What structural forms interstellar grains take?

Core-Mantle Dust Model 硅酸盐 核 + 碳质尘埃壳 Silicate core: 9.7µm Si-O, 18µm O-Si-O features Carbon dust mantle: 3.4µm aliphatic C-H feature Li & Greenberg 1997

Composite Dust Model Mathis (1996) composite collections of small silicates; small graphite, amorphous carbon, HAC; Vacuum (45%);

Silicate-Graphite-PAH Model Silicate dust, graphite dust, PAHs are physically separated! “MRN” (Mathis et al. 1977) Draine & Lee (1984) Weingartnetr & Draine (2001) Li & Draine (2001) Draine & Li (2007)

Spectropolarimetric Constraints: Polarized Silicate Features Becklin-Neugebauer object in OMC-1 (Aitken et al. 1989); 9.7µm Si-O stretching mode, 18µm O-Si-O bending mode;

Silicate Polarization  Core-Mantle Model: Good! Greenberg & Li (1996, A&A, 309, 258)

Silicate Polarization  Composite Model: Not Good! Henning & Stognienko (1993, A&A, 280, 609)

Silicate Polarization  Silicate/Graphite Model: Not Good! Aitken et al. (1989, MNRAS, 236, 919)

Core-Mantle Dust Model 硅酸盐 核 + 碳质尘埃壳 Silicate core: 9.7µm Si-O, 18µm O-Si-O features Carbon dust mantle: 3.4µm aliphatic C-H feature 如果9.7µm, 18µm 光谱特征有偏振  硅酸盐核 非球形,排列!  3.4µm光谱特征也应该有偏振! Li & Greenberg 1997

Unpolarized 3.4µm Feature (Aliphatic Hydrocarbon C-H Stretching Mode)  Core-Mantle Model: Not Good? (Adamson et al. 1999; Chiar et al. 2004)

Core-Mantle Grains: 9. 7, 18µm silicate features polarized  3 Core-Mantle Grains: 9.7, 18µm silicate features polarized  3.4µm hydrocarbon feature polarized! (Li & Greenberg 2002, ApJ, 577, 789)

Nonspherical Core + Spherical Mantle Dust? 9.7µm Si-O feature polarized  3.4µm C-H feature polarized! (Li, Liang & Li 2014, MNRAS, 440, L56 )

Nonspherical Core + Spherical Mantle Dust? 9.7µm Si-O feature polarized  3.4µm C-H feature polarized! (Li, Liang & Li 2014, MNRAS, 440, L56 )

Composite Dust? 9.7µm Si-O feature polarized  3.4µm C-H feature polarized! (Li, Liang & Li 2014, MNRAS, 440, L56 )

Future Work #1 Nonspherical silicate core with an equal-thickness carbon mantle? Silicate dust and carbon dust are physically separated? The 3.4µm hydrocarbon dust component is just minor in nature?

Future Work #2 What Can We Learn from AFGL 2591? 3.1µm ice feature: not polarized (Kobayashi et al. 1980) ; 9.7,18µm silicate feature polarized; silicates annealed (Aitken et al. 1988);  Non-spherical core-spherical mantle grains? Radiative torques?

Silicate Features: Polarized AFGL 2591: annealed silicates (Aitken et al. 1988); Smith et al. 2000; Wright et al. 2001;

BN Object: Ice Feature Polarized (Kobayashi et al. 1980)

W33A: CO (4.67µm), XCN (4.62µm) Features Polarized (Chrysostomou et al. 1996)

Bare Silicate/Graphite Model? The 3.4µm Feature Carrier? Henning & Schnaiter (1998): Nano-sized hydrogenated carbon grains  2175Å extinction hump and 3.4µm feature common origin? HD204827, Taurus cloud: with 3.4µm feature, no 2175Å extinction hump (Valencic et al. 2003, Whittet et al. 2004);

Summary Polarimetric data provide powerful constraints on dust models grain geometry; grain size; grain composition; Existing polarimetric data  bare silicate/graphite model: 9.7, 18µm silicate polarization? composite model: 9.7, 18µm silicate polarization core-mantle model: 3.4µm hydrocarbon polarization?

Composite Grain Models vs. Far-IR Polarization Polarized thermal far-IR emission reveals magnetic field geometry; grain geometry; grain dielectric function ε(λ) = ε1 + iε2; No polarization when ε(λ)  1; can very “fluffy” composite grains produce large far-IR polarization?

Large Far-IR Polarizations Are Observed! SCUBA 850µm: 9.1% polariz. on M82 (Greaves et al. 2000);

Large Far-IR Polarizations Are Observed! SCUBA 850µm: 11.9% polariz. on OMC-3 (Matthews & Wilson 2000);

Interstellar Extinction 2 grain populations: a < 100 Å; a>0.1 µm; Characterized by RV=AV/E(B-V); 2175 Å hump Stecher 1965; stable λ0 ; variable FWHM;

Interstellar Polarization Large grains nonspherical and aligned; Small grains spherical and/or not aligned;

Interstellar Polarization DCB Whittet (2003); λmax ~ RV ~ dust size; Pmax/AV ≤3%/mag; HD 204827 (top) λmax =0.42µm; HD 99872 (bottom) λmax =0.58µm; Martin et al. (1999)

Interstellar Polarization Features 2175 Å hump polarization HD 197770 (top) λmax=0.51µm; (Clayton et al. 1992); ρ Oph (bottom) λmax =0.68µm (Wolff et al. 1997); (ΔP2175Å/ΔA2175Å)/ (PV/AV) ≤ 0.09;

Absorption Features Silicate Aliphatic carbon Ices 9.7 µm: Si-O stretching; 18 µm: O-Si-O bending; amorphous; Aliphatic carbon 3.4 µm C-H band not seen in dense clouds; Ices H2O 3.1, 6.0 µm; CO 4.68 µm; CO2 4.28, 15.2 µm; CH3OH 3.54,9.75 µm; H2CO 5.81 µm; CH4 7.68 µm; NH3 2.97 µm;

Absorption Features Aliphatic hydrocarbon Aromatic hydrocarbon 3.4 µm C-H stretching band; Diffuse ISM; PPN CRL 618; Other galaxies; Aromatic hydrocarbon 3.3 µm C-H stretching; 6.2 µm C-C stretching;

Infrared Emission Classic grains Ultrasmall grains: Td ~ 20K; emit at λ>60 µm; ~ 2/3 of total emitted power; Ultrasmall grains: PAHs (~10% C); a<100 Å; emit at λ<60 µm; stochastic heating; ~ 1/3 of total power; Ultrasmall silicate grains: ≤5% (Li & Draine 2001a);

Elemental Depletions [X/H]gas <[X/H]๏; ≥90% of Si, Mg, Fe and ≥60% of C, O are locked up in dust; Dust composition: Silicate, carbon

Interstellar Polarization Features 9.7,18µm silicate: polariz. Becklin-Neugebauer object; Aitken et al. (1989); Greenberg & Li (1996); 3.4µm hydrocarbon: one obs: unpolarized; PAHs bands: unpolariz.; Far-IR emission: polariz.; Ice bands: polarized; 3.1µm H2O; 4.67µm CO; 4.62µm XCN-;

Core-Mantle Model Li & Greenberg (1997) silicate core; carbon mantle; PAHs + small graphitic grains; dust destruction τdes≈1-5 108yrs; dust injection τpro≈2.5 109yrs; mantle (accretion; protection);

Core-Mantle Model 3.4µm C-H carbon (Greenberg, Li, et al. 1995) 9.7,18µm silicate polarizat. (Greenberg & Li 1996)

Silicate Polarization  Silicate/graphite Model: Not Good Silicate Polarization  Silicate/graphite Model: Not Good! (Greenberg & Li, 1996, A&A, 309, 258)

Future Work Obtain spectropolarimetric 3.4µm and 9.7, 18µm data for the same lines of sight; Are there regional variations in the interstellar silicate absorption and polarization profiles?  synthesize dielectric functions for “astronomical silicates” in different regions; Study mid and far-IR polarization properties of different grains using DDA) non-spherical core-spherical mantle grains; can fluffy composite grains produce large far-IR polarization?