Outline ATF’s Terawatt CO2 laser overview BESTIA concept (as presented at AAC ’14) Progress since AAC ’14 Current vision of the roadmap to 100 TW.

Slides:



Advertisements
Similar presentations
1 Journées Scientifiques de lEDOM March 8, fs laser chain based on optical parametric chirped pulse amplification Lourdes Patricia Ramirez Equipe.
Advertisements

Vulcan Front End OPCPA System
Central Laser Facility
1 LOA-ENSTA. 2 3 For PW class laser, a contrast better than is required I ASE has to be < W/cm² The ASE intensity is enough to generate.
Petawatt Field Synthesizer
Design and Experimental Considerations for Multi-stage Laser Driven Particle Accelerator at 1μm Driving Wavelength Y.Y. Lin( 林元堯), A.C. Chiang (蔣安忠), Y.C.
New hardware and setups New short pulse regime Experimental results TW power Future plans on laser development ATF CO 2 LASER progress Vitaly Yakimenko.
CO 2 laser system M. Polyanskiy, I. Pogorelsky, M. Babzien, and V. Yakimenko.
Thermal properties of laser crystal Rui Zhang ACCL Division V, RF-Gun Group Feb 20, 2015 SuperKEKB Injector Laser RF Gun Review.
Strecher, compressor and time structure manipulation
kHz-driven high-harmonic generation from overdense plasmas
Ultrafast XUV Coherent Diffractive Imaging Xunyou GE, CEA Saclay Director : Hamed Merdji.
P.M. Paul, L.Vigroux, G. Riboulet, F.Falcoz. 2 Main Limitation in High gain Amplifier: Gain Narrowing Ti:Sa Pockels cell FWHM
High energy, high repetition rate pump laser system for OPCPAs A.-L. Calendron 1,2,3, L. E. Zapata 1,4, H. Çankaya 1,2, H. Lin 4 and F. X. Kärtner 1,2,3,4.
Compton based Polarized Positrons Source for ILC V. Yakimenko, I. Pogorelsky BNL Collaboration meeting, Beijing, January 29-February1, 2006.
Ultrafast Spectroscopy
J. Fils for the PHELIX team GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany Sept Speyer EMMI Workshop The PHELIX High Energy.
Bill White Drive Laser April 16, Drive Laser Commissioning Experience Reminder of requirements on Drive Laser.
SLAC XFEL Short Bunch Measurement and Timing Workshop 1 Current status of the FERMI project (slides provided by Rene Bakker) Photoinjector laser system.
Compton Linac for Polarized Positrons V. Yakimenko, I. Pogorelsky, M. Polyanskiy, M. Fedurin BNL CERN, October 15, 2009.
Time-Bandwidth Products getting the average power of ultrafast DPSS lasers from hundreds of mW to tens of Watts by Dr. Thomas Ruchti CERN, April 2006 SESAM.
SAPPHiRE workshop, CERN 19 th Feb 2013 A SAPPHiRE Laser? Laura Corner Lasers for Accelerators group (L4A) John Adams Institute for Accelerator Science,
High power ultrafast fiber amplifiers Yoann Zaouter, E. Cormier CELIA, UMR 5107 CNRS - Université de Bordeaux 1, France Stephane Gueguen, C. Hönninger,
Palaiseau - FRANCE Spatio-Temporal Chirped Pulse Amplification for Avoiding Spectral Modifications in Ultra-Short Petawatt Lasers C. Radier1,2, F. Giambruno1,3,
A 5 fs high average power OPCPA laser system for attosecond pulse production Philip Bates, Yunxin Tang, Emma Springate and Ian Ross Central Laser Facility,
Linac e+ source for ILC, CLIC, SuperB, … Vitaly Yakimenko, Igor Pogorelsky November 17, 2008 BNL.
W.S. Graves1 Seeding for Fully Coherent Beams William S. Graves MIT-Bates Presented at MIT x-ray laser user program review July 1, 2003.
Efficient scaling of output pulse energy in static hollow fiber compressors X. Chen, A. Malvache, A. Ricci, A. Jullien, R. Lopez-Martens ICUIL 2010, Watkins.
Compton based Polarized Positrons Source for ILC V. Yakimenko Brookhaven National Laboratory September 12, 2006 RuPAC 2006, Novosibirsk.
Yen-Yu Chang, Li-Chung Ha, Yen-Mu Chen Chih-Hao Pai Investigator Jypyng Wang, Szu-yuan Chen, Jiunn-Yuan Lin Contributing Students Institute of Atomic and.
Laser Status Update J. Moody, E. Oz, P. Muggli MPP Future Accelerators AWAKE Collaboration
Laser Source for the  -  Collider Jim Early Lawrence Livermore National Lab Laser Science and Technology SPLAT Short Pulse Lasers, Applications & Technology.
Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan National Taiwan University, Taiwan National Central University, Taiwan National Chung.
Advancement in photo-injector laser: Second Amplifier & Harmonic Generation M. Petrarca CERN M. Martyanov, G. Luchinin, V. Lozhkarev Institute of Applied.
Yb:YAG Regenerative Amplifier for A1 Ground Laser Hut Rui Zhang ACCL Division V, RF-Gun Group Nov 20, 2015 SuperKEKB Injector Laser RF Gun Review.
Laser System Upgrade Overview
Progress at BNL Vitaly Yakimenko. Polarized Positrons Source (PPS for ILC) Conventional Non- Polarized Positrons: In our proposal polarized  -ray beam.
TOWARD GENERATION OF HIGH POWER ULTRAFAST WHITE LIGHT LASER USING FEMTOSECOND TERAWATT LASER IN A GAS-FILLED HOLLOW-CORE FIBER Walid Tawfik Physics and.
Short pulse oscillator
Extreme Light Infrastructure in Romania: progress Daniel URSESCU Technical contact point for ELI in Romania INFLPR, Magurele, Romania.
Workshop for advanced THz and Compton X-ray generation
Drive Laser Introduction ‘ir’ master oscillator power amplifier chain (MOPA) uses standard chirped pulse amplification scheme (CPA) third harmonic generation.
BESTIA – the next generation ultra-fast CO 2 laser for advanced accelerator research Igor Pogorelsky Misha Polyanskiy, Marcus Babzien, John Skaritka, Ilan.
Date of download: 6/25/2016 Copyright © 2016 SPIE. All rights reserved. (a) Schematic of the noncollinear optical parametric amplification (NOPA) geometry.
Nonlinear optical compression of high-power, 10 µm CO 2 laser pulses in gases and semiconductors Jeremy Pigeon Sergei Tochitsky Chan Joshi Neptune Laboratory.
ThorEA ADSR Meeting, Glasgow, 7th September 2009 Laser-induced Nuclear Reactions David J. Hamilton
Date of download: 9/18/2016 Copyright © 2016 SPIE. All rights reserved. Schematic of the OPCPA laser system at Sandia National Laboratories. A stretched.
Compton based Polarized Positrons Source for ILC V. Yakimenko 1, D. Cline 2, Ya. Fukui 2, V. Litvinenko 1, I. Pogorelsky 1, S. Roychowdhury 3 1 BNL, 2.
Yb:YAG Regenerative Amplifier for A1 Ground Laser Hut Rui Zhang ACCL Division V, RF-Gun Group Nov 20, 2015 SuperKEKB Injector Laser RF Gun Review.
Mid-IR lasers for energy frontier plasma accelerators Igor Pogorelsky Mikhail Polyanskiy (BNL ATF) Marcus Babzien (BNL ATF) Wei Lu (Tsinghua Univ.) Wayne.
Solid State Lasers and Applications Proposed for Brookhaven’s ATF-II
V.N. Litvinenko (SBU) C. Joshi, W. Mori (UCLA)
High power VBG Yb-fiber laser
SPARCLAB: PW-class Ti:Sa laser+SPARC
V.N. Litvinenko, H. Li, N. Vafaei Stony Brook University
Current Situation of Yb:YAG Laser at A1 Ground Laser Hut
Laser System Upgrade Overview
High power high energy ultrafast fiber amplifiers
All-Optical Injection
Business Development Manager, Bucarest 2011
DESIGN AND FIRST EXPERIENCE WITH THE FERMI SEED LASER
Principle of Mode Locking
Dana Tovey, Sergei Tochitsky, Eric Welch, Chan Joshi
Kansas Light Source Upgrade
Laser Source for the g-g Collider Presented to: Snowmass 2001
Kansas Light Source Laser System J. R. Macdonald Laboratory
Drive Laser Commissioning Status
LCLS Injector Laser System Paul R. Bolton, SLAC April 24, 2002
High energy 6.2 fs pulses Shambhu Ghimire, Bing Shan, and Zenghu Chang
Injector Drive Laser Technical Status
Presentation transcript:

BESTIA (Brookhaven Experimental Supra-Terawatt Infrared at ATF) Laser: A Status Report.‬

Outline ATF’s Terawatt CO2 laser overview BESTIA concept (as presented at AAC ’14) Progress since AAC ’14 Current vision of the roadmap to 100 TW

ATF’s Terawatt CO2 laser: Active medium “1 ps” 1 bar 10 bar 10 bar, isotopes 3 ps @ 10.2 µm 1.7 ps @ 9.2 µm

ATF’s Terawatt CO2 laser: Scheme 1 µJ 10 mJ 6 J СЩ2 CO2 CO2 “Master oscillator” Produces a picosecond seed pulse Regenerative amplifier Provides most of amplification Small active volume Isotopic Final amplifier Main source of energy Large active volume No isotopes (yet)

ATF’s Terawatt CO2 laser: Specs Two amplifiers Single amplifier Maximum achievable Routine operation Peak power 2 TW 0.5 – 1 TW 5 GW Pulse energy 6 J 2 – 4 J 10 mJ Pulse duration 3 ps 3.5 ps 1.7 ps Rep. rate 0.05 Hz 3 Hz Wavelength 10.2 µm 9.2 µm

100-TW concept (as of AAC ’14) OPA: fs seed Stretcher + compressor = Chirped pulse amplification High-pressure, isotopic amplifiers Nonlinear compressor Collection of innovations: Non-linear compressor 70 J 50 J 2 ps 25 TW OPA Ti:Al2O3 Amplifier 1 Stretcher 35 µJ 350 fs 10 µJ 100 ps 100 mJ Amplifier 2a Amplifier 2b Amplifier 2c 10 J 100 fs 100 TW

Progress: solid-state frontend In routine operation 0.35 ps 25 µJ 5 ps 0.1 µJ New system: OPA Old system: TEA CO2 laser with amplifier and multi-stage pulse slicing

Chirped-pulse amplification: what’s done In routine operation CPA in regenerative amplifier only Str. Amp. Cmp. 0.35 ps → 80 ps → 50 ps → 1.7 ps Compressor Stretcher YAG Coupler Semiconductor switch (Si) Amplifier vessel Pockels cell Polarizing splitter Photo- detector Osc. OPA Ti:Al2O3 (1.6 ps) Polyanskiy, Babzien, Pogorelsky, "Chirped-pulse amplification in a CO2 laser,"  Optica 2, 675-681, 2015

Chirped-pulse amplification: work in progress 75 mm Self-focusing of a 3.5-ps pulse in NaCl window 0.5 J 0.7 J 0.9 J 1.3 J 1.7 J 2.5 J Full-power compressor test stand Vacuum chamber for BESTIA’s compressor: 1.5 x 2.4 m2 165x220 mm2 75 lines/mm 1 TW (3.8 J, 3.5 ps) demonstrated

Non-linear compressor non-linear material aperture (spatial filter) Pair of small-density gratings (linear compressor) >1 ps <1 ps 2.5 J 20 mm 3.5 J Spectrum 2.5 J OUT IN Proof-of-principle test: simulations Pulse Polyanskiy, "Pulse compressor,” US Patent Application 20160013605 A1 (Jan. 14, 2016) OUT Polyanskiy, "co2amp: A software program for modeling the dynamics of ultrashort pulses in optical systems with CO2 amplifiers,"  Appl. Opt. 54, 5136-5142, 2015 IN

Optical materials considerations F=50 cm sample laser vacuum: <= 0.1 mbar Cu mirror 100 µm I0 = 8.0 J/cm2 “Replica” Cu grating I0 = 3.4 J/cm2 Damage threshold (J/cm2) 1.7 ps @ 9.2 µm Bare Grating (replica) Grating (master) Cu 5 1.5 ??? Al 0.5 Mo 2.5 - 100 µm

6 m Ø1 m New final amplifier Discharge 3 × (8.5×10×100 cm3) isotopic CO2 50% 18O BESTIA’s design energy: 70 J before compression Present system: demonstrated 18.5 J in chirped pulse

Roadmap Present system CPA Real-life test of full-power CPA at 0.5-1 TW More stretching, reach 100 mJ in regen Test master Cu grating Non-linear compressor: proof of principle (R&D) BESTIA Final amplifier Start with two amplifier sections Start without isotopes Demonstrate 30-35 J in chirped pulse In-vacuum compressor Demonstrate 15-20 J after compression (5 TW, 3.5 ps @ 10.2 µm) Isotopes Install and test CO2 freeze-out system for isotope recovery Add isotopes to main amplifier Demonstrate 15-20 J after compression (10 TW, 1.7 ps @ 9.2 µm) Non-linear compressor (R&D) Achieve 25 TW Future BESTIA R&D towards 100 TW