B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | www.hzdr.de Helmholtz-Zentrum Dresden-Rossendorf B. Kämpfer Indian Summer School 2011 Extreme.

Slides:



Advertisements
Similar presentations
B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Helmholtz-Zentrum Dresden-Rossendorf B. Kämpfer PW Laser Workshop, HZDR 2011 Strong-Field.
Advertisements

Helmholtz-Zentrum Dresden-Rossendorf Extreme Matter in the Universe
Cosmological Aspects of Neutrino Physics (I) Sergio Pastor (IFIC) 61st SUSSP St Andrews, August 2006 ν.
Supported by DOE 11/22/2011 QGP viscosity at RHIC and LHC energies 1 Huichao Song 宋慧超 Seminar at the Interdisciplinary Center for Theoretical Study, USTC.
Questions and Probems. Matter inside protoneutron stars Hydrostatic equilibrium in the protoneutron star: Rough estimate of the central pressure is: Note.
Toshiki Maruyama (JAEA) Nobutoshi Yasutake (Chiba Inst. of Tech.) Minoru Okamoto (Univ. of Tsukuba & JAEA ) Toshitaka Tatsumi (Kyoto Univ.) Structures.
Major Epochs in the Early Universe t3x10 5 years: Universe matter dominated Why? Let R be the scale length.
The Phase Diagram of Nuclear Matter Oumarou Njoya.
ORIGIN OF THE UNIVERSE P In the beginning, God created the heaven and the earth; and the earth was without form and void; and darkness was upon the face.
The Big Bang Or… The Standard Model. Precepts of the standard model The laws of Physics are the same throughout the Universe. The Universe is expanding.
1 Lecture-05 Thermodynamics in the Expanding Universe Ping He ITP.CAS.CN
Age, Evolution, and Size of the Cosmos Szydagis and Lunin.
Early Universe Chapter 38. Reminders Complete last Mallard-based reading quiz before class on Thursday (Ch 39). I will be sending out last weekly reflection.
The speed of sound in a magnetized hot Quark-Gluon-Plasma Based on: Neda Sadooghi Department of Physics Sharif University of Technology Tehran-Iran.
Particle Physics and Cosmology
Particle Physics and Cosmology Dark Matter. What is our universe made of ? quintessence ! fire, air, water, soil !
Histoire de l’univers infinite, finite, infinite,.
the equation of state of cold quark gluon plasmas
Advances in contemporary physics and astronomy --- our current understanding of the Universe Lecture 5: Evolution of Early Universe April 30 th, 2003.
Histoire de l’univers infinite, finite, infinite,.
Particle Physics and Cosmology cosmological neutrino abundance.
Intro to Particle and Nuclear Physics and the Long Island Gold Rush Steven Manly Univ. of Rochester REU seminar June 1, 2006
Astro-2: History of the Universe Lecture 12; May
The Big Bang Or… The Standard Model. Precepts of the standard model The laws of Physics are the same throughout the Universe. The Universe is expanding.
Christina Markert Physics Workshop UT Austin November Christina Markert The ‘Little Bang in the Laboratory’ – Accelorator Physics. Big Bang Quarks.
Discovery of the Higgs Boson Gavin Lawes Department of Physics and Astronomy.
Nonequilibrium Dynamics in Astrophysics and Material Science YITP, Kyoto, Japan, Oct. 31-Nov. 3, 2011 Tetsufumi Hirano Sophia Univ./the Univ. of Tokyo.
Cosmology I & II Fall 2012 Cosmology Cosmology I & II  Cosmology I:  Cosmology II: 
Dense Stellar Matter Strange Quark Matter driven by Kaon Condensation Hyun Kyu Lee Hanyang University Kyungmin Kim HKL and Mannque Rho arXiv:
Quarks, Leptons and the Big Bang particle physics  Study of fundamental interactions of fundamental particles in Nature  Fundamental interactions.
BIG BANG NUCLEOSYNTHESIS CONFRONTS COSMOLOGY AND PARTICLE PHYSICS Gary Steigman Departments of Physics and Astronomy Center for Cosmology and Astro-Particle.
Cosmology and Dark Matter I: Einstein & the Big Bang by Jerry Sellwood.
AS2001 / 2101 Chemical Evolution of the Universe Keith Horne Room 315A
Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.
AS2001 Chemical Evolution of the Universe Keith Horne 315a
Today: “Nucleosynthesis… another phase change in early universe… and why is the Universe so Flat?” HW for next time: Onion, “the nucleus and forces of.
Cosmology, Cosmology I & II Fall Cosmology, Cosmology I & II  Cosmology I:  Cosmology II: 
FRW-models, summary. Properties of the Universe set by 3 parameters:  m,  ,  k of Which only 2 are Independent:  m +   +  k = 1.
The Universe is expanding The Universe is filled with radiation The Early Universe was Hot & Dense  The Early Universe was a Cosmic Nuclear Reactor!
High Energy Nuclear Physics and the Nature of Matter Outstanding questions about strongly interacting matter: How does matter behave at very high temperature.
Lattice Gauge Theory for the Quark-Gluon Plasma Sourendu Gupta TIFR.
Big Bang Nucleosynthesis (BBN) Eildert Slim. Timeline of the Universe 0 sec Big Bang: Start of the expansion secPlanck-time: Gravity splits off.
Big Bang A Trip to the Beginning of the Universe by Stefan Diehl.
New Nuclear and Weak Physics in Big Bang Nucleosynthesis Christel Smith Arizona State University Arizona State University Erice, Italy September 17, 2010.
Chapter 17 The Beginning of Time. Running the Expansion Backward Temperature of the Universe from the Big Bang to the present (10 10 years ~ 3 x
(Primordial Nucleosynthesis*) B. Kämpfer Research Center Rossendorf/Dresden & Technical University Dresden - Expanding Universe - Prior to Nucleosynthesis.
NEUTRINO DECOUPLE as Hot DM Neutrinos are kept in thermal equilibrium by the creating electron pairs and scattering (weak interaction): This interaction.
QCD Matter within Quasiparticle Model & CEP B. Kämpfer Research Center Rossendorf/Dresden Technical University Dresden with M. Bluhm, R. Schulze, D. Seipt,
Quasiparticle Perspective on CEP B. Kämpfer Research Center Rossendorf/Dresden Technical University Dresden with M. Bluhm, R. Schulze, D. Seipt, supported.
1 Lecture-03 The Thermal History of the universe Ping He ITP.CAS.CN
The Universe is expanding The Universe is filled with radiation The Early Universe was Hot & Dense  The Early Universe was a Cosmic Nuclear Reactor!
PhD student at the International PhD Studies Institute of Nuclear Physics PAN Institute of Nuclear Physics PAN Department of Theory of Structure of Matter.
Hot 1-2 Loop QCD*** B. Kämpfer Research Center Dresden-Rossendorf Technical University Dresden ***: M. Bluhm, R. Schulze, D. Seipt real, purely imaginary.
B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Helmholtz-Zentrum Dresden-Rossendorf B. Kämpfer Kolloquium Ilmenau 2012 Vom LHC.
 Pinning down the date of creation with such precision is impressive, but we have gone much further. We have begun to piece together the whole history.
Axel Drees, University Stony Brook, PHY 551 S2003 Heavy Ion Physics at Collider Energies I.Introduction to heavy ion physics II.Experimental approach and.
Lattice Gauge Theory for the Quark-Gluon Plasma Sourendu Gupta TIFR.
Towards understanding the Quark-Gluon Plasma
Review of ALICE Experiments
The 'Little Bang’ in the Laboratory - Physics at the LHC
Raju Venugopalan Brookhaven National Laboratory
Hydro + Cascade Model at RHIC
Alternative to Big Bang theory: Steady State Cosmology
Universe! Early Universe.
The Beginning of Time (Birth Of The Universe)
QCD & cosmology The quest for cosmological signals of QCD dynamics
Early Universe.
Suggested Course Layout
Hyun Kyu Lee Hanyang University
Presentation transcript:

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Helmholtz-Zentrum Dresden-Rossendorf B. Kämpfer Indian Summer School 2011 Extreme Matter in the Universe (part 1)

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | when where what 1)t ~10^-6 s everywhere hadronization small 2)t ~ 10^2 s everywhere nucleosynthesis large neutrino decoupl. e+ e- annihilation 3) now neutron stars cbm large 4) now CERN hadronization small 5) 2018 AD FAIR CBM large www questions after Big Bang

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | What is Extreme? (i) hot: T ~ 100 MeV ~ 10^12 K (ii) dense: rho ~ 10^15 g/cm^3 ~ 5 rho_0 (iii) fast: dt < 10 fm/c ~ 30 ys = 30x10^-24 s RX J UrQMD + GEANT4

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Numerology in nuclei

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | 2) = rather normal, but interesting playground T x x x rho x x dt x x universe hadronization universe nucleosynthesis neutron stars LHC, RHIC FAIR CBM What are our Questions? QCD hadrons (structure + interactions) phase diagram of SIM deconfined SIM = sQGP = ? hot dense short

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Barz et al., PLB 1987 T CEP Nf = 3 T n CEP mix Nf = 3 T Phase Diagram of SIM

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | or n T phase diagram of water

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Gauge Theories w/o SSB Abelian (QED) non-Abelian (QCD) E E 1/137 1 sQCD pQCD Landau pole UV slavery asymp. freedom non-trivial vacuum: condensates not neccessarily weak-coupling: alpha too large 0

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Columbia plotWuppertal-Bp plot O(4) vs. Ising

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Hadron Resonance Gas T < Tc: hadrons Dashen-Ma-Bernstein theorem Wuppertal-Bp

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Gluon Gas: Nf = 0 QCD trace anomaly: e – 3p = 0

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Trace Anomaly/Interaction Measure quasi-particle model: adjustment to lattice QCD results susceptibilities, transport coeff. Bielefeld lattice QCD: Tc puzzle

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik |

Bielefeld-Swansea data c0 c2 c4 c6 D=1.15 neglect strong interaction QPM lQCD

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Tools: (1) Fluid Dynamics long-wavelength modes T(x), mu(x), u(x) and their gradients currents 1) 2nd law of thermodynamics: 2) conserved charges: 3) EoM: 1st law of thermodyn. Euler/Navier-Stokes curvilinear coordinates/Riemann space-time:

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | 1)= control eq. (seldom constructive eq.) 2)= local charge conservation 3)= 4 eqs. for 4 components of constitutive eqs.: perfect fluiddissipation What is flow? Choice of 4-velocity (3 independent components) a)Eckart: flow of net charge b)LL: flow of energy LL condition: t x

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | even when neglecting dissipative effects: EoS is needed p(e,n) or p(T,mu) or s(e,n) or... first-principle calculations (lattice QCD, large-T expans.) phenomenology, measurements V, E, N_i: extensives e, n_i T, mu_i: intensives entropy density s, pressure p... applicability of hydro: container > gradients large enough

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Tools (2): Thermodynamics Gibbs-Duham: Euler: susceptibilities: Taylor expansion (Bielefeld):

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Example: Cosmic Confinement perfect fluid + cosmological principle homogeneity + isotropy in 3D Robertson-Walker metric (coordinates) Einstein eqs. expanding universe (matter cools and becomes dilute) comoving volume ESES ESES R(t1) R(t2)

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Friedmann eqs. EoS

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Bag Model EoS: too simple pi T p qg Tc Gibbs criteria for phase equilibrium (maximum entropy) p_qg = p_pi T_qg = T_pi mu_qg=mu_pi -p = free energy 1st order pt (nucleation, bubbles etc.) p T e,s T mix T t10 Tc

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Cosmic Swing (1): SIM from small mu to large mu hadronization

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Driving the Cosmic Swing: eta mystery: 5year WMAP CDM God given init. cond. or via baryogenesis (sphalerons) specific entropy conserved: T > Tc: relativistic quarks carry baryon number T < Tc: non-relativistic nucleons carry baryon number T ~ 45 MeV: annhilation of baryons, excess (~ eta) remains why is baryon excess so small OR why is entropy so large?

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | B B disapparence of anti-matter (1)

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Boltzmann approx.: Densities high/low temperature approx.:

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik |

Stretching of Distances T = 170 MeV 5 m1 fm fm 1 fm q q g 1000 fm q T = 2.3 x 10 MeV -10 On averageOn Earth In nuclei & neutron stars BBB

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | - cosmic confinement is too slow - gradual matter conversion in qg h cross over - if confinement would be 1st order pt: bubble growth, supercooling, inhomogeneities - uncertainty: neutrino degeneracy Relics of Cosmic Confinement? after 30 years research: none Jenkowski, BK, Z. Phys. 1990

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Primordial Nucleosynthesis the first three minutes four fundamental forces in concert: - gravity expansion of universe - electromagnetic e+ e- annihilation - weak neutrino decoupling - strong/nuclear cooking the leight elements: specific abundances for given cosmic expansion + reaction rates charge neutrality:

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | e-, e+ e- - e+e- e+ e- - e+ e-, e+

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik |

e-

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Big Bang e+ e- Annihilation t ~ 0.3 s: neutrino decoupling t ~ 15 s, T ~ 3 x 10^9 K: e+ e- annhilation Kolb-Turner disappearance of last antimatter in universe only excess electrons survive reheating of photons, nucleons e- e+

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | e+ e- Nano Droplets Yaresko, Munshi, BK, Phys. Plasma 2010 Munshi, BK, PRA 2009 first estimates: Shen, Meyer-ter-Vehn, PRE 65

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | The Universe as Reactor Friedmann: T(t) from D: baryometer 4He: chronometer only destruction after BNN

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Primordial Nuclear Network 2. D, 4. 3He, 8. T, 6. 4He, 7. 7Li Dominant Channels (strong int./QCD):

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | p n DT He Be Li Nollett-Burles

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Rate Equations for 2 2 Processes rates (T) Init. Conds.: earlier equilibrium values add decays integrate up to freeze-out T(t)

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Evolution of Abundances D Be mass fraction

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Cosmic Concordance? new physics beyond Standard Model? Xdimensions, more neutrinos, axions, SUSY particles, G(t),...

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Neutron Life Time nearly all n are in 4He: Y(4He) depends on (other abundances are robust) and also on fastBBN

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Number of Light Neutrinos

B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Cosmic Interim Summary Cosmic Confinement/Hadronization T > Tc = 170 MeV, t < 10^-6 s: mu small, q + g T 10^-6 s: hadrons emerge and decay, no relics T ~ 40 MeV: nucleons annihilate (up to the excess) no relics Primordial Nucleosynthesis concides with neutrino decoupling and e+ e- annihilation abundancies of light nuclei are sensitive to expansion history = relics