Numerische Simulation – Vom Modell zur Visualisierung, Ferienakademie 2005 Finite element discretisation finite difference and finite element discretisation.

Slides:



Advertisements
Similar presentations
TWO STEP EQUATIONS 1. SOLVE FOR X 2. DO THE ADDITION STEP FIRST
Advertisements

Numbers Treasure Hunt Following each question, click on the answer. If correct, the next page will load with a graphic first – these can be used to check.
Repaso: Unidad 1 Lección 2
Scenario: EOT/EOT-R/COT Resident admitted March 10th Admitted for PT and OT following knee replacement for patient with CHF, COPD, shortness of breath.
AP STUDY SESSION 2.
1
1 Vorlesung Informatik 2 Algorithmen und Datenstrukturen (Parallel Algorithms) Robin Pomplun.
© 2008 Pearson Addison Wesley. All rights reserved Chapter Seven Costs.
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Chapter 1 The Study of Body Function Image PowerPoint
Finite Element Method CHAPTER 9: FEM FOR 3D SOLIDS
INTRODUCTION TO MECHANICS FOR SOLIDS AND STRUCTURES
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
Author: Julia Richards and R. Scott Hawley
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 3 CPUs.
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
Objectives: Generate and describe sequences. Vocabulary:
UNITED NATIONS Shipment Details Report – January 2006.
David Burdett May 11, 2004 Package Binding for WS CDL.
Business Transaction Management Software for Application Coordination 1 Business Processes and Coordination. Introduction to the Business.
1 RA I Sub-Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Casablanca, Morocco, 20 – 22 December 2005 Status of observing programmes in RA I.
Properties of Real Numbers CommutativeAssociativeDistributive Identity + × Inverse + ×
Custom Statutory Programs Chapter 3. Customary Statutory Programs and Titles 3-2 Objectives Add Local Statutory Programs Create Customer Application For.
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt BlendsDigraphsShort.
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
1 Click here to End Presentation Software: Installation and Updates Internet Download CD release NACIS Updates.
REVIEW: Arthropod ID. 1. Name the subphylum. 2. Name the subphylum. 3. Name the order.

Break Time Remaining 10:00.
Turing Machines.
Table 12.1: Cash Flows to a Cash and Carry Trading Strategy.
PP Test Review Sections 6-1 to 6-6
1 The Blue Café by Chris Rea My world is miles of endless roads.
Bright Futures Guidelines Priorities and Screening Tables
EIS Bridge Tool and Staging Tables September 1, 2009 Instructor: Way Poteat Slide: 1.
Bellwork Do the following problem on a ½ sheet of paper and turn in.
Exarte Bezoek aan de Mediacampus Bachelor in de grafische en digitale media April 2014.
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 1 Section 5.5 Dividing Polynomials Copyright © 2013, 2009, 2006 Pearson Education, Inc. 1.
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
1 RA III - Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Buenos Aires, Argentina, 25 – 27 October 2006 Status of observing programmes in RA.
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
1..
CONTROL VISION Set-up. Step 1 Step 2 Step 3 Step 5 Step 4.
© 2012 National Heart Foundation of Australia. Slide 2.
Adding Up In Chunks.
MaK_Full ahead loaded 1 Alarm Page Directory (F11)
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Synthetic.
Model and Relationships 6 M 1 M M M M M M M M M M M M M M M M
Subtraction: Adding UP
Prof.ir. Klaas H.J. Robers, January 16, 2013 Supervising a graduating student 1.
1 hi at no doifpi me be go we of at be do go hi if me no of pi we Inorder Traversal Inorder traversal. n Visit the left subtree. n Visit the node. n Visit.
Analyzing Genes and Genomes
Prof.ir. Klaas H.J. Robers, 14 July Graduation: a process organised by YOU.
Speak Up for Safety Dr. Susan Strauss Harassment & Bullying Consultant November 9, 2012.
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Essential Cell Biology
Converting a Fraction to %
Clock will move after 1 minute
Intracellular Compartments and Transport
PSSA Preparation.
Essential Cell Biology
Immunobiology: The Immune System in Health & Disease Sixth Edition
Physics for Scientists & Engineers, 3rd Edition
Energy Generation in Mitochondria and Chlorplasts
Select a time to count down from the clock above
Murach’s OS/390 and z/OS JCLChapter 16, Slide 1 © 2002, Mike Murach & Associates, Inc.
Copyright Tim Morris/St Stephen's School
1 Decidability continued…. 2 Theorem: For a recursively enumerable language it is undecidable to determine whether is finite Proof: We will reduce the.
Presentation transcript:

Numerische Simulation – Vom Modell zur Visualisierung, Ferienakademie 2005 Finite element discretisation finite difference and finite element discretisation by Christian Maier

Christian Maier 2 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation table of contents introduction method of FDM method of FEM lattice technical applications

Christian Maier 3 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation Arbour with torque transfer D=40mm T=250Nm 12

Christian Maier 4 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation Arbour with torque transfer calculation of the mechanical stress and safety drag torsional moment shering stress

Christian Maier 5 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation Arbour with torque transfer definition of safety determination of the material stress safety number

Christian Maier 6 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation Arbour with torque transfer not considered details: –dynamic influences –surface quality (roughness) –notch sensifity

Christian Maier 7 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation Complex problem How can this problem be solved analytically in about one hour? from:

Christian Maier 8 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation table of contents introduction method of FDM method of FEM lattice technical applications

Christian Maier 9 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation The Dirichlet problem for the Poisson equation Example: Poisson equation Conditions: –Solve within a rectangle –Area is: Open Not empty contiguous

Christian Maier 10 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation The Dirichlet problem for the Poisson equation given functions: searched function: conditions:

Christian Maier 11 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation The finite-difference-method the idea: –searching for an approximate function to get a solution for the marginal problem for a number of finite points

Christian Maier 12 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation The finite-difference-method what is to do: –derivative in first condition is replaced by quotients of differences –second condition must be valid only on latice points

Christian Maier 13 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation The finite-difference-method characteristics: –two dimensions in space –Constant mesh size (h>0) –h: truncation parameter from: Numerik partieller DGL, Knabner/Angermann

Christian Maier 14 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation The finite-difference-method definition of the latice points: a = l*h, b = m*h; short writing all points in the rectangle:

Christian Maier 15 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation The finite-difference-method form the system of equations: part one –given

Christian Maier 16 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation The finite-difference-method form the system of equations: part two –given

Christian Maier 17 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation The finite-difference-method lattice points within the rectangle lattice points on the boundary of the rectangle

Christian Maier 18 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation The finite-difference-method linear equation for approximate value definitions:

Christian Maier 19 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation The finite-difference-method the 5 points star of the difference method from: Numerik partieller DGL, Knabner/Angermann

Christian Maier 20 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation The finite-difference-method dimension of the boundary equation form of the equation system dimensions

Christian Maier 21 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation The finite-difference-method shape of the right side of the equation if point is near the boundary and j is neighbour in 5 points star in all other cases

Christian Maier 22 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation The finite-difference-method form of 0 0

Christian Maier 23 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation The finite-difference-method form of identity matrix form of matrix 0 0

Christian Maier 24 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation table of contents introduction method of FDM method of FEM lattice technical applications

Christian Maier 25 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation The finite-element-method short example for the calculating operations –given equations: –testing function:

Christian Maier 26 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation The finite-element-method next step: integration over the area

Christian Maier 27 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation The finite-element-method next step: discretisation

Christian Maier 28 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation The finite-element-method next step: use of a base

Christian Maier 29 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation The finite-element-method next step: use of a base

Christian Maier 30 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation table of contents introduction method of FDM method of FEM lattice technical applications

Christian Maier 31 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation Lattice points from: Skriptum zur Vorlesung Leichtbau, Prof. Baier

Christian Maier 32 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation Lattice points from: Skriptum zur Vorlesung Leichtbau, Prof. Baier

Christian Maier 33 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation Lattice points

Christian Maier 34 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation table of contents introduction method of FDM method of FEM lattice points technical applications –bend guider –parts of a robot arm

Christian Maier 35 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation the technical application two examples: –bend guider analytical numerical –parts of a robot arm

Christian Maier 36 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation the technical application z x

Christian Maier 37 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation the technical application equation of motion

Christian Maier 38 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation the technical application solution for this problem

Christian Maier 39 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation the technical application Human robot

Christian Maier 40 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation the technical application arm

Christian Maier 41 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation the technical application elbow joint

Christian Maier 42 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation the technical application elbow joint

Christian Maier 43 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation the technical application

Christian Maier 44 Numerische Simulation - Vom Modell zur Visualisierung, Ferienakademie 2005 finite element discretisation the technical application