High-speed Light Peak optical link for high energy applications

Slides:



Advertisements
Similar presentations
The ATLAS Pixel Detector
Advertisements

ATLAS SCT Endcap Detector Modules Lutz Feld University of Freiburg for the ATLAS SCT Collaboration Vertex m.
IEEE10/NSS R. Kass N A. Adair, W. Fernando, K.K. Gan, H.P. Kagan, R.D. Kass, H. Merritt, J. Moore, A. Nagarkar, S. Smith, M. Strang The Ohio State.
J.Ye / SMU May 18, 2015 GOL + SoS R & D Work at SMU 1.The Test of the GOL chip. 2.First test on the SoS driver chip and the submission of a dedicated test.
Richard Kass IEEE NSS 11/14/ Richard Kass Radiation-Hard ASICs for Optical Data Transmission in the ATLAS Pixel Detector K.E. Arms, K.K. Gan, M.
Detector lecturesT. Weidberg1 Opto-electronics Why use opto-electronics –General advantages –HEP experiments Elements of system –Emitters –Fibres –Receivers.
VERTEX 2002 Experience with Parallel Optical Link for the CDF Silicon Detector S. Hou for the DOIM group Academia Sinica, Taiwan.
MDT-ASD PRR C. Posch30-Aug-01 1 Radiation Hardness Assurance   Total Ionizing Dose (TID) Change of device (transistor) properties, permanent   Single.
05/11/06Sasha Pronko, Silicon Workshop II, UCSB1 PORTCARDs & DOIMs Sasha Pronko Fermilab.
*Supported by the EU FP7-PEOPLE-2012-ITN project nr , INFIERI, "Intelligent Fast Interconnected and Efficient Devices for Frontier Exploitation in.
A radiation-tolerant LDO voltage regulator for HEP applications F.Faccio, P.Moreira, A.Marchioro, S.Velitchko CERN.
LECC03, 9/30/2003 Richard Kass/OSU 1 Richard Kass Radiation-Hard ASICs for Optical Data Transmission in the ATLAS Pixel Detector K.E. Arms, K.K. Gan, M.
16 Sep 2008 Versatile Link Status Report F. Vasey on behalf of the project steering board With input from C. Issever J. Troska.
IEEE06/San Diego R. Kass N Bandwidth of Micro Twisted-Pair Cables and Spliced SIMM/GRIN Fibers and Radiation Hardness of PIN/VCSEL Arrays W. Fernando,
A Serializer ASIC for High Speed Data Transmission in Cryogenic and HiRel Environment Tiankuan Liu On behalf of the ATLAS Liquid Argon Calorimeter Group.
R. KassIEEE05/Puerto Rico N Radiation-Hard Optical Link for the ATLAS Pixel Detector Richard Kass The Ohio State University W. Fernando, K.K. Gan,
SPS Beam Position Monitors: MOPOS Front-End Electronics Jose Luis Gonzalez BE/BI 22/11/2013.
R. KassIEEE04/Rome 1 Radiation-Hard ASICs for Optical Data Transmission in the ATLAS Pixel Detector Richard Kass The Ohio State University K.E. Arms, K.K.
Status of the PiN diodes irradiation tests B. Abi( OSU), R. Boyd (OU), P. Skubic (OU), F. Rizatdinova (OSU), K.K. Gan (Ohio State U.)
DOIM Parallel Optical Link s: TX/RX S. Hou, R.S. Lu 19-Dec-2003, Lake Geneva.
IEEE08/NSS R. Kass N Radiation-Hard/High-Speed Data Transmission Using Optical Links W. Fernando, K.K. Gan, A. Law, H.P. Kagan, R.D. Kass, J. Moore,
Filip Tavernier Karolina Poltorak Sandro Bonacini Paulo Moreira
Development of DC-DC converter ASICs S.Michelis 1,3, B.Allongue 1, G.Blanchot 1, F.Faccio 1, C.Fuentes 1,2, S.Orlandi 1, S.Saggini 4 1 CERN – PH-ESE 2.
23 February 2004 Christos Zamantzas 1 LHC Beam Loss Monitor Design Considerations: Digital Parts at the Tunnel Internal Review.
ICTPP09 R. Kass Radiation-Hardness of VCSELs & PINs Richard Kass The Ohio State University OUTLINE Introduction/ATLAS pixel detector Radiation Hardness.
S.Hou, Academia Sinica Taiwan. 2Outline Optical links for ATLAS Laser-driver  fiber  PIN-driver LHC modules in service Rad-hard requirement for LHC/SLHC.
Optical Links CERN Versatile Link Project VL – Oxford involvement CERN VL+ for ATLAS/CMS phase II upgrade – Introduction and aims – Oxford workpackage:
Evaluation of Multi-Gbps Optical Transceivers for Use in Future HEP Experiments Luis Amaral CERN – PH/ESE/BE – Opto 16/09/2008.
C. Issever, Oxford 1 Status of Radiation Proposal Focus on: Amendment to Proposal Radiation Protocols.
8 July 1999A. Peisert, N. Zamiatin1 Silicon Detectors Status Anna Peisert, Cern Nikolai Zamiatin, JINR Plan Design R&D results Specifications Status of.
Novel Semi-Transparent Optical Position Sensors for high-precision alignment monitoring applications Sandra Horvat, F.Bauer, V.Danielyan, H.Kroha Max-Planck-Institute.
Honeywell Advanced Photonics Development Overview ATLAS Meeting January 7, 1999 John Lehman Honeywell Technology Center
DPF 2011 R. Kass 1 P. Buchholz, A. Wiese, M. Ziolkowski Universität Siegen OUTLINE Introduction Result on 4-channel Driver/Receiver with Redundancy Design.
New Small Wheel muon trigger optical module New Small Wheel muon trigger optical module S. Hou 2014/08/29 Academia Sinica.
Versatile Link The Versatile Transceiver Feasibility Demonstration (Project phase II update) Csaba Soos, Jan Troska, Stéphane Détraz, Spyros Papadopoulos,
Implementing a 10 Gb/s VCSEL Driven Transmitter for Short Range Applications Irfan N. Ali Michael C. Clowers David S. Fink Sean K. Garrison Jeff A. Magee.
RESMDD02 July , Florence, A.Singovski, University of Minnesota1 Radiation hardness of the Avalanche Photodiodes for ECAL CMS detector at CERN.
PIN current degradation Versus 3 MeV proton fluence 3 MeV proton (a)(b) (c)(d) Study of radiation damage in VCSELs and PINs for the optical links of the.
Level-1 Data Driver Card (L1DDC) HEP May 2014 Naxos 08/05/2014HEP 2014, NAXOS Panagiotis Gkountoumis National Technical University of Athens.
A high speed serializer ASIC for ATLAS Liquid Argon calorimeter upgrade Tiankuan Liu On behalf of the ATLAS Liquid Argon Calorimeter Group Department of.
1 The Link-On-Chip (LOC) Project at SMU 1.Overview. 2.Status 3.Current work on LOCs6. 4.Plan and summary Jingbo Ye Department of Physics SMU Dallas, Texas.
Slides for Opto-Working Group on COTS and PIC Microcontroller D. Underwood Sept 12, 2012.
Ageing tests of VCSELs in non-hermetic 85/85 condition Ageing tests of VCSELs in non-hermetic 85/85 condition S. Hou, 2014/08/26 Academia Sinica.
March 14, 2016 Report on SMU R&D work1 Link-On-Chip (LOC) 1st Prototype  Status:  Prototype chip with the clock unit (PLL), serializer, laser driver,
1 Single event upset test of the voltage limiter for the ATLAS Semiconductor tracker TSL Experiment Number: F151 distance between power supplies and modules.
Beam Profile Monitor for Spot-Scanning System Yoshimasa YUASA.
LOCld – The fastest VCSEL driver in optical link for ATLAS Futian Liang USTC-IHEP, May. 3 rd, 2013.
1 Roger Rusack The University of Minnesota. Projects  Past Projects  11,000 channels of 0.8 Gbs for the CMS crystal calorimeter readout.  1,500 channels.
TCT measurements with strip detectors Igor Mandić 1, Vladimir Cindro 1, Andrej Gorišek 1, Gregor Kramberger 1, Marko Milovanović 1, Marko Mikuž 1,2, Marko.
A 4 x 8-Gbps VCSEL Array Driver ASIC and integration with a custom array transmitter module for the LHC front-end transmission Di Guo, a,g,* Chonghan Liu,
Radiation hardness of the 1550 nm edge emitting laser for the optical links of the CDF silicon tracker S. Hou 15-Jun-2004.
FF-LYNX: 2010 & H Luca Fanucci Pisa, 14 Giugno 2011.
OTMB Development and Upgrade Plan for LS2
A 16:1 serializer for data transmission at 5 Gbps
Southern Methodist University
Integrating part of the ATLAS Radiation Monitor will measure
Study Report of Neutron Irradiation to Kobe Univ.
HEC I chip design Short summary (J.Bán).
sTGC Router Optical Transceiver options
Status of the CDF II silicon tracking system
Next generation rad-hard links
IBL Overview Darren Leung ~ 8/15/2013 ~ UW B305.
The Silicon-on-Sapphire Technology:
Optical data transmission for
Status report of the ATLAS SCT optical links
Upgrade of the ATLAS MDT Front-End Electronics
TTC system for FP420 reference timing?
The Role of Light in High Speed Digital Design
W. Ali, R. Corsini, E. Ciaramella SSSA Pisa Italy
VCSEL drivers in ATLAS Optical links
Presentation transcript:

High-speed Light Peak optical link for high energy applications S. Hou Academia Sinica, Taipei, Taiwan O6-MH-03 2014/01/23 11:00 ~ 11:15 | 社管大樓 一樓 123室

Outline Light Peak optical link for HEP Radiation tests HEP developments vs Industrial products FOCI light peak module : light coupler, driver Advantages and requirements Speed, Bit-Error-Rate Radiation tests Beam test with 30 MeV proton at INER Light coupler deterioration Non-Ionizing-Energy-Loss to driver S. Hou, P.K. Teng Academia Sinica F. Chiang, J. Hou FOCI Fiber Optic Comm., Inc. T.K. Liu, J.B. Ye Southern Methodist Univ. C.H. Wang Nat’l United Univ.

HEP optical modules HEP applications: advantages over copper wiring low mass for inner tracking zero cross-talk, long distance HEP developments: (modules by IPAS) CDF: edge-emitting laser, 9 ch. parallel with ceramic 90o mount ATLAS SCT: VCSEL with 45o fiber ends for coupling Difficulties: light coupling to fiber, production yields, uniformity,

HEP transceivers vs Commercial products IT industry: telecommunication and computing 10 Gb/s links with SFP+ transceivers for professional facilities 4.8 Gb/s USB3 for personal computing and household electronics Off-the-shell to HEP Laser, PIN are commonly rad-hard TOSA/ROSA, relieved coupling issue Driver/controller ASICs of old CMOS processes are not rad-hard Outer detector transceivers with rad-hard drivers CERN Versatile links, 850 nm, MM, GBLD (IBM 130 nm) SMU Multi-TX, 850nm, MM, LOCld (SOS .25 μm) CERN VTRx 10 GB/s SFP+ (provided by Liverage) SMU MTx with Micrel drivers/controller

Total Ionizing Dose to Commercial QSFP, miniPOD, PPOD, ONET8501V, ONET1101L tested with X-ray or γ-ray, none meet the ATLAS LAr radiation requirement. Kintex 7, ONET8501 tested with a neutrons in Los Alamos SEU rate of Kintex 7 is too high for LAr. Vendor Part# Gbps # ch Rad type (krad/hr) TID (krad) QSFP Avago AFBR-79EIDZ 10 4 60Co  75 miniPOD AFBR-810FN1Z 1 x-ray 360 66 PPOD AFBR-810EPZ 12 150 VCSEL driver TI ONET8501V 39 178 F-P laser driver ONET1101L 9.6 464 < 900 Vendor Part# # of ch Flux (n/cm2/s) Fluence (n/cm2) # errors  (cm2) Kintex-7 Xilinx XC7K325TFFG900 16 (2 tested) 4.6E5 2.1E11 4/4 (2 shared) 1.6E-11 VCSEL driver TI ONET8501V 1 < 5E-12 SMU, TWEPP2012

Light Peak Technology Light Peak, Intel technology delivers high bandwidth starting at 10 Gb/s to mainstream computing and consumer electronics in a cost-effective manner Multiple I/O protocols, simultaneously over a single cable, enabling connection between peripherals, workstations, displays, disk drives, docking stations … One Port Optical Module by FOCI

Light Peak Optical module Material: PEI Refractive Surface Full acceptance angle : 25.4 degree Divergence angle : 26 – 32 degree Spherical-aberration free Plano-Convex Hyperbolic Lens VCSELs aperture diameters  from about 5 to 20 µm

FOCI Light Peak module Optical IC PIN VCSEL Coupler mechanical precision is 5 μm Lens improve light coupling efficiency and relaxed matching tolerance Top Cap Pigtail PIN VCSEL Optical IC VIA Labs USB 3.0 Active Optical Cable Solution Demonstrated at CES 2012 Collaboratively developed with FOCI, PCL, OpTarget and UMEC, the VIA Labs V0510 optical transceiver extends the reach of USB 3.0 to over 100 meters

FOCI module functional diagram VCSEL/PIN: 850 nm bare die, 4.8 Gb/s or 10 Gb/s, >0 dBm (1mW) Optical IC: VIA Labs V0510, TSMC 90nm technology USB-3 protocol, ~60 mW, 4.8 Gb/s TX/RX driver+ regulator/controller Transimpedance Amplifier Limiting Non-Volatile Memory Control & Logic Linear Voltage Regulator TS BG LDO LOS BIAS Driver Pre-Amplifier DC-to-DC Converter Electrical TX input RX output VCSEL optical TX output Photo-Diode optical RX input LOS: Lost Of Signal Detector TS: Temperature Sensor BG: Band Gap Reference LDO: Low Drop Out voltage regulator

Bit Error Rate test RX – Jitter P-P 34.89 ps, Crossing 45 %, Eye Amplitude 197 mV, Rise Time 46.18 ps TX – Rise Time 35.97 pS, Jitter P-P 22.26 ps Extinction Ration 5.61, Fall Time 58.52 pS

Radiation damage to coupler cap The light coupler cap Spherical-aberration free Plano-Convex Hyperbolic Lens Material: PEI (polyetherimide), as for the TOSA/ROSA tip optical quality surface Deterioration by Total-Ionizing-Dose Irradiated with Co60 Gamma ray at INER Taiwan flux: 3.5 kGy/hr, total: 117 kGy  NO LOSS !! for light transmission within the 2% systematic error

Non-Ionizing Energy Loss to VCSEL, Optical IC Proton Irradiation INER 30 MeV proton beam flux of 3.5x1010 p/cm2s, to a total 1.2x1014 equivalent to 8.9x1014 n(1MeV)/cm2s Beam profile Strip and pad chambers for beam profile strip pitch 1 mm Irradiation measurement FOCI module DC biased no signal input, VCSEL online monitored for mid-level DC light VCSEL light degradation Optical IC function

NIEL damage to VCSEL, Optical IC VCSEL degradation VO510 DC biased, (1.5 V to TX driver) Annealing during irradiation Linear loss to fluence  VECEL degraded to 80% of the original after 1x1014 p(30 MeV)/cm2 consistent with bare VCSEL tests Single Event effect to Optical IC Single Event Effect = 3x10-3 Hz @Beam flux = 3.5x109 /cm2s to controller circuits, observed by VCSEL DC light level hopping Fatal damage to Optical IC after 1.2x1014 p(30 MeV)/cm2 VCSEL die at 10 mA (Truelight) VCSEL in FOCI, TX DC biased +

Summary Light Peak design on light coupling  compactness, flexibility in packaging  choice of die, chip etc Optical IC of latest CMOS technology  radiation hardness to be confirmed New versions of FOCI modules dual TX/RX and new 10 Gb/s driver IC radiation hardness to be investigated