Epiphany Conference, Cracow, January 2012

Slides:



Advertisements
Similar presentations
Super B factory plan at KEK Masa Yamauchi KEK Super B Factory Workshop April 20-22, 2005 Honolulu Why, how, what, who, when and how much?
Advertisements

Oct.,  Overview of the CLEO experiment  D and D S leptonic decays to  and  : Measurements of absolute branching fractions Measurements of absolute.
DPF Victor Pavlunin on behalf of the CLEO Collaboration DPF-2006 Results from four CLEO Y (5S) analyses:  Exclusive B s and B Reconstruction at.
Toru Iijima & Koji Ikado (Talk presented by T.I.) Nagoya University May 15, 2006 “Flavour in the LHC CERN The First Evidence of B   from Belle.
Jan 28th, 2009Colin Jessop at Notre Dame An experiment to measure CP violation in B mesons Colin Jessop University of Notre Dame.
CHARM 2007, Cornell University, Aug. 5-8, 20071Steven Blusk, Syracuse University D Leptonic Decays near Production Threshold Steven Blusk Syracuse University.
Search for LFV  decays involving     ’ at Belle Y. Enari, Belle collaboration Nagoya University.
June-10 th, 2005 WIN05 Super B factories Shoji Uno ( KEK) Super B factories Shoji Uno ( KEK) June-10 th, 2005 WIN05 Delphi, Greece Contents 1. Physics.
16 April 2005 APS 2005 Search for exclusive two body decays of B→D s * h at Belle Luminda Kulasiri University of Cincinnati Outline Motivation Results.
Wolfgang Menges, Queen Mary Measuring |V ub | from Semileptonic B Decays Wolfgang Menges Queen Mary, University of London, UK Institute of Physics: Particle.
Super B KEK - Super KEKB -
SuperKEKB to search for new sources of flavor mixing and CP violation - Introduction - Introduction - Motivation for L= Motivation for L=
B. Golob, Belle II 1/23Epiphany Conference, Cracow, Jan 2012 Boštjan Golob University of Ljubljana/Jožef Stefan Institute & Belle/Belle II Collaboration.
Status and Physics Prospects of the SuperKEKB Project Y. Horii Tohoku Univ. (Japan) 1 5th March 2011, La Thuile 2011.
SuperKEKB to search for new sources of flavor mixing and CP violation - Introduction - Introduction - Motivation for L= Motivation for L=
The Belle Experiment at KEK Christoph Schwanda Institute of High Energy Physics (HEPHY) Austrian Academy of Sciences Symposium Wissenschaftliche Kooperation.
W properties AT CDF J. E. Garcia INFN Pisa. Outline Corfu Summer Institute Corfu Summer Institute September 10 th 2 1.CDF detector 2.W cross section measurements.
Moriond QCD, Mar., 2007, S.Uehara 1 New Results on Two-Photon Physics from Belle S.Uehara (KEK) for the Belle Collaboration Rencontres de Moriond, QCD.
QCD 与强子物理研讨会, 2010 年 8 月 4 - 10 日,威海 Prospects of Flavor Physics at the LHC 高原宁 清华大学高能物理研究中心 2010/8/61Y. Gao, Prospects of flavor physics at the LHC.
Welcome to the 1 st Open Meeting of the Super KEKB Collaboration. (T. Browder, University of Hawaii) [All talks and discussions about the detector, physics.
B. Golob, Ljubljana Univ.Belle II Status 1Interplay work., CERN, Dec 2009 Boštjan Golob University of Ljubljana, Jožef Stefan Institute & Belle Collaboration.
SuperKEKB B factory April 12, 2006 Nobu Katayama (KEK)
July 24, 2010 Yutaka USHIRODA (KEK) for the Belle II Collaboration Status and Prospects of SuperKEKB and Belle II.
1 Highlights from Belle Jolanta Brodzicka (NO1, Department of Leptonic Interactions) SAB 2009.
1 Rare Bottom and Charm Decays at the Tevatron Dmitri Tsybychev (SUNY at Stony Brook) On behalf of CDF and D0 Collaborations Flavor Physics and CP-Violation.
Tsukuba-hall webcam 1 Beam Pipe and Vertex Detector extraction: on Nov. 10, 2010 Belle Detector Roll-out: Dec. 9, 2010 End-caps, CDC, B-ACC, TOF extraction:
B. Golob, D Mixing & CPV 1/25Frontier of Particle Physics 2010, Hu Yu Village, Aug 2010 Boštjan Golob University of Ljubljana/Jožef Stefan Institute &
The Belle II DEPFET Pixel Detector
Synergy between Energy and Luminosity Frontiers (Summary) 1 Y.Sakai (KEK)
1 Koji Hara (KEK) For the Belle Collaboration Time Dependent CP Violation in B 0 →  +  - Decays [hep-ex/ ]
1 Recent results from Belle and Status of SuperKEKB/Belle II Chengping Shen Univ. of Hawaii, Belle collaboration.
CP violation in B decays: prospects for LHCb Werner Ruckstuhl, NIKHEF, 3 July 1998.
Belle II and LHCb upgrade IITBBS Dec 14-21, 2015 Gagan Mohanty TIFR, Mumbai.
Prospects for quarkonia at SuperKEKB Stephen Lars Olsen Seoul National University Heavy Quarkonium 2011, 4-7 October, GSI, Darmstadt.
Pavel Pakhlov ITEP, Moscow For the Belle/Belle-2 Collaborations Belle-2 experiment at SuperKEKB New Physics P h y s i c i s t Unlike the cat we can build.
B. Golob, e+e- Flavor Factories 1/18WHEPP, December 2013 Boštjan Golob University of Ljubljana/Jožef Stefan Institute Belle/Belle II Collaboration Physics.
Belle II Science and Overall Project Tom Browder University of Hawaii.
H.-G. Moser, Jennifer Consortium Meeting, Rome, June 10-12, B factories - results and motivation for upgrade SuperKEB - how to reach 40x more luminosity.
B. Golob, SuperKEKB/Belle II 1/16Recontres de la Vallee d’Aoste, La Thuile, Mar 2010 Boštjan Golob University of Ljubljana/Jožef Stefan Institute & Belle/Belle.
Belle II status and plans
Belle II at SuperKEKB Kurtis Nishimura University of Hawaii
The Software Library of the Belle II Experiment
Epiphany Conference, Cracow, January 2012
The Belle II Experiment at SuperKEKB
Prospects for flavour physics with Belle II
Prospect of hadron spectroscopy in higher intensity e+e- collider
Flavor Physics at e+e- Colliders
Tree-level New Physics searches in semileptonic decays at Belle
Tagir Aushev For the Belle Collaboration (EPFL, Lausanne ITEP, Moscow)
Report on WP2 Activities
Semileptonic and Leptonic D0, D+, and Ds+ Decays at CLEO-c Werner Sun, Cornell University for the CLEO Collaboration XLIVth Rencontres de Moriond, QCD.
Budker INP, Novosibirsk
New Physics Prospects in Mixing and CP Violation at Belle II
CPV & Belle II Introduction (Examples of...) LFU LFV CPV
Belle II - Introduction
Flavour Physics Belle II experiment at SuperKEKB Tsukuba, Japan
Search for CP Violating Decays of theU(4S)
Super-KEKB Collaboration
Searching for SUSY in B Decays
Status of SuperKEKB May 11, 2007 SuperB Workshop Masa Yamauchi KEK.
B  at B-factories Guglielmo De Nardo Universita’ and INFN Napoli
Experimental Particle Physics PHYS6011 Putting it all together Lecture 4 6th May 2009 Fergus Wilson, RAL.
Rare and forbidden charm decays
Yasuhiro Okada (KEK/Sokendai) October 18, 2007
D0 Mixing and CP Violation from Belle
Experimental Particle Physics PHYS6011 Putting it all together Lecture 4 28th April 2008 Fergus Wilson. RAL.
Hadron Fragmentation New Results from Belle
SuperKEKB Proto-collaboration
Charmed Baryon Spectroscopy at BABAR
UK HEP Forum „The Spice of Flavour“ Abingdon November 2018
Presentation transcript:

Epiphany Conference, Cracow, January 2012 Introduction PID Accelerator Calorimeter Vertex General The Belle II Project Boštjan Golob University of Ljubljana/Jožef Stefan Institute & Belle/Belle II Collaboration Introduction Accelerator Detector Vertex physics example PID Calorimeter General requirements University of Ljubljana “Jožef Stefan” Institute Epiphany Conference, Cracow, January 2012

indirect observation of Introduction PID Accelerator Calorimeter Vertex General Introduction Quest for NP... ....consists of energy frontier direct observation of new particles & processes using highest achievable energies intensity frontier indirect observation of NP effects on (rare) known processes (cosmic frontier) bližina otoka Veli Drvenik, sept. 2011 Energy frontier Intensity frontier

LHC at the energy frontier Introduction PID Accelerator Calorimeter Vertex General Introduction Quest for NP LHC at the energy frontier 1 TeV 95% C.L. exclusion limits on MSSM A0 V. Sharma, LP11 conference 95% C.L. exclusion limits in mass SUSY plane SUSY in the simplest forms seems to be excluded H. Bachacou, LP11 conference

B factories, LHCb, ... at the intensity frontier Introduction PID Accelerator Calorimeter Vertex General Introduction Quest for NP B factories, LHCb, ... at the intensity frontier B mesons sector D mesons sector CKM Fitter, Summer 2011 HFAG, December 2011 direct measurement indirect determination b = Hints of deviations from SM at few s level

requirements for future facilities (quark sector) Introduction PID Accelerator Calorimeter Vertex General Introduction Quest for NP Intensity frontier requirements for future facilities (quark sector) Illustrative reach of NP searches NP reach in terms of mass s1/N  O(102) higher luminosity complementarity to other intensity frontiers experiments (LHCb, BES III, ....); accurate theoretical predictions to compare to Terra Incognita NP flavor violating couplings( 1 in MFV)

Introduction Accelerator “B-Factory”, KEKB @ KEK e- Belle e+ KEKB: PID Accelerator Calorimeter Vertex General Introduction Accelerator “B-Factory”, KEKB @ KEK accelerator institute Tokyo (40 mins by Tsukuba Exps) KEKB: e- (HER): 8.0 GeV e+ (LER): 3.5 GeV crossing angle: 22 mrad ECMS=M(U(4S))c2 dNf/dt = s(e+e-→f) L LER HER e- Belle e+ 2010 Ldt = 1020 fb-1 1999 (1.02 ab-1)

”continuum” production Introduction PID Accelerator Calorimeter Vertex General Introduction Accelerator “B-Factory”, KEKB @, KEK Belle Ldt  1020 fb-1 u,d b Bd0, B+ b energ. threshold for BB production b u,d U(4S) Bd0, B- s(e+e-→hadroni) [nb] “on resonance” production e+e- → U(4S) → Bd0Bd0, B+B- s(e+e- → BB)  1.1 nb (~109 BB pairs) g* c e- e+ hadrons s(e+e- → c c)  1.3 nb (~1.3x109 XcYc pairs) ”continuum” production hadrons running at Y(nS), e.g. Y(5S) (BsBs)

Accelerator SuperKEKB Nano beams design (P. Raimondi) SuperKEKB KEKB Introduction PID Accelerator Calorimeter Vertex General Accelerator SuperKEKB SuperKEKB KEKB sx~100mm,sy~2mm sx~10mm,sy~60nm Nano beams design (P. Raimondi) e- e+ ∫L dt [ab-1] b*: beta-function (trajectories envelope) at IP xy: beam-beam parameter ∫L dt=50 ab-1 (2022) ∫L dt=10 ab-1 (2018) small by* large xy  (by*/ey)  small ey hourglass effect  small bx* increase I current B factories L [s-1cm-2] design L=8·1035 s-1cm-2

Accelerator Super KEKB e+ e- Introduction PID Accelerator Calorimeter Vertex General Accelerator Super KEKB Belle II e+ New IR New superconducting /permanent final focusing quads near the IP New beam pipe & bellows Replace short dipoles with longer ones (LER) e- Add / modify RF systems for higher beam current Low emittance positrons to inject Redesign the lattices of HER & LER to squeeze the emittance Positron source Damping ring Low emittance gun Low emittance electrons to inject New positron target / capture section TiN-coated beam pipe with antechambers

Detector Belle II RPC m & KL counter: scintillator + Si-PM 7.4 m Introduction PID Accelerator Calorimeter Vertex General Detector Belle II RPC m & KL counter: scintillator + Si-PM for end-caps 7.4 m CsI(Tl) EM calorimeter: waveform sampling electronics, pure CsI for end-caps 3.3 m 1.5 m 4 layers DSSD → 2 layers PXD (DEPFET) + 4 layers DSSD 7.1 m Time-of-Flight, Aerogel Cherenkov Counter → Time-of-Propagation counter (barrel), prox. focusing Aerogel RICH (forward) Central Drift Chamber: smaller cell size, long lever arm

Vertex detector PXD+SVD Belle II SVD Belle z impact parameter Introduction PID Accelerator Calorimeter Vertex General Vertex detector PXD+SVD Belle II SVD Belle r [cm] DSSD’s pixels sBelle Design Group, KEK Report 2008-7 z [cm] z [cm] DCDB R/O chip DEPFET matrix z impact parameter resolution DEPFET mockup Belle Switcher control chip 20 mm 10 mm prototype DEPFET sensor pb*sin5/2(q) [GeV/c] Belle II Si Vertex Det.

t-dependent CPV B → K* (→KSp0)g t-dependent CPV SM: Introduction PID Accelerator Calorimeter Vertex General t-dependent CPV t-dependent decays rate of B → fCP; S and A: CP violating parameters B → K* (→KSp0)g t-dependent CPV SM: SCPK*g  -(2ms/mb)sin2f1  -0.04 Left-Right Symmetric Models: SCPK*g  0.67 cos2f1  0.5 SCPKsp0g = -0.15 ±0.20 ACPKsp0g = -0.07 ±0.12 D. Atwood et al., PRL79, 185 (1997) B. Grinstein et al., PRD71, 011504 (2005) 5 ab-1 HFAG, Summer’11 s(SCPKsp0g)= 0.09 @ 5 ab-1 0.03 @ 50 ab-1 50 ab-1 (~SM prediction)

Time Of Propagation counter (barrel) Introduction PID Accelerator Calorimeter Vertex General PID Time Of Propagation counter (barrel) y x prototype quartz bar Hamamatsu 16ch MCP-PMT partial Cerenkov ring reconstruction from x, y and t of propagation Proximity focusing Aerogel RICH (endcap) Aerogel Aerogel radiator Hamamatsu HAPD Cherenkov photon 200mm n~1.05 Hamamatsu HAPD

Direct CPV DCPV puzzle: tree+penguin processes, B+(0) →K+p0(-) Introduction PID Accelerator Calorimeter Vertex General Direct CPV B0 →K+p- DCPV puzzle: tree+penguin processes, B+(0) →K+p0(-) DAKp= A(K+p -)- A(K+p 0)= -0.127±0.022 model independent sum rule: A(K0p+)=0.009 ±0.025 A(K+p0)=0.050 ±0.025 A(K+p-)=-0.098 ±0.012 A(K0p0)=-0.01 ±0.10 misidentif. bkg. P. Chang, EPS’11 Belle, Nature 452, 332 (2008), 480 fb-1 A(K0p0) dA(K+p0) M. Gronau, PLB627, 82 (2005); D. Atwood, A. Soni, PRD58, 036005 (1998) measured (HFAG) A(K0p+) sum rule expected (sum rule) Belle II 50 ab-1 HFAG, Summer’11

EM Calorimeter ECL (barrel): ECL (endcap): ECL signal ECL signal Introduction PID Accelerator Calorimeter Vertex General EM Calorimeter ECL signal amplitude ECL signal time sampling ECL (barrel): new electronics with 2MHz wave form sampling ECL (endcap): pure CsI crystals; (may be staged) faster performance and better rad. hardness than Tl doped CsI off-time bkg. signal t t trigger trigger 2x improved s at 20x bkg.

Emiss measurements B  tn, hnn, ... Example of B  hnn measurement: Introduction PID Accelerator Calorimeter Vertex General Emiss measurements B  tn, hnn, ... fully (partially) reconstruct Btag; reconstruct h from Bsig→hnn or t(→ hn)n; no additional energy in EM calorim.; signal at EECL~0; Btag full reconstruction: NeuroBayes; TOP detector; ECL, increased background; Example of B  hnn measurement: Missing E (n) Btag Bsig Bsig → tn candidate event signal region hadr. tag B(B0 →K*0 nn) < 3.4 ·10-4 @ 90% C.L. Belle, PRL99, 221802 (2007), 490 fb-1 -- exp. signal (20xBr) exp. bkg. (scaled to sideband)

Emiss measurements B hnn BsigBtag (hnn)(Xln) semil. tag Introduction PID Accelerator Calorimeter Vertex General Emiss measurements B hnn BsigBtag (hnn)(Xln) semil. tag (hnn)(X) hadr. tag B(B+  K(*)+nn) can be measured to ±30% with 50 ab-1; limits on right-handed currents SM W. Altmannshofer et al., arXiv:0902.0160

SuperKEKB requirements Introduction PID Accelerator Calorimeter Vertex General SuperKEKB requirements ∫L dt [ab-1] current B factories ∫L dt=50 ab-1 (2022) 2010 2012 2014 2016 2018 2020 2022 O(102) higher luminosity SuperKEKB will deliver 50 ab-1 complementarity to other intensity frontiers experiments (LHCb, BES III, ....); accurate theoretical predictions to compare to

SuperKEKB requirements Introduction PID Accelerator Calorimeter Vertex General SuperKEKB requirements O(102) higher luminosity complementarity to other intensity frontiers experiments (LHCb, BES III, ....); accurate theoretical predictions to compare to G. Isidori et al., Ann.Rev.Nucl.Part.Sci. 60, 355 (2010) Super B factory LHCb K experiments B(B →Xsg) 6% Super-B B(B →Xdg) 20% Super-B S(B →rg) 0.15 Super-B B(t →mg) 3 ·10-9 Super-B (90% U.L.) B(B+ →Dtn) 3% Super-B B(Bs →gg) 0.25 ·10-6 Super-B (5 ab-1) sin2qW @ U(4S) 3 ·10-4 Super-B

SuperKEKB requirements Introduction PID Accelerator Calorimeter Vertex General SuperKEKB requirements Methods and processes where Super B factory can provide important insight into NP complementary to other experiments: (shown are expected sensitivities @ 50 ab-1) Emiss: B(B→ tn), B(B → Xctn), B(B → hnn),... ±3% ±3% ±30% Inclusive: B(B → sg), ACP(B → sg), B(B → sll ), ... ±6% ±5 ·10-3 ±1 ·10-7 Neutrals: S(B → KSp0g), S(B → h’ KS), S(B → KSKSKS), B(t → mg), B(Bs → gg), ... ±0.03 ±0.02 ±0.03 ±3 ·10-9 ±3 ·10-7 Detailed description of physics program at Super B factories at: A.G. Akeroyd et al., arXiv: 1002.5012 B. O’Leary et al., arXiv: 1008.1541

SuperKEKB requirements Introduction PID Accelerator Calorimeter Vertex General SuperKEKB requirements Example of complementarity: MSSM searches Belle II constraints shown @ 5 ab-1 LHCb: Br(Bs m+m-)~ (4-5)x10-9 (@ 3 fb-1) contours of S(KSp0g) S(KSp0g) ~ -0.4±0.1 S(KSp0g) ~ 0.1±0.1 Re(ddRL)23 Belle II/LHCb combination: stringent limits on Re(ddRL)23 , tanb tan b A.G. Akeroyd et al., arXiv:1002.5012

SuperKEKB requirements Introduction PID Accelerator Calorimeter Vertex General SuperKEKB requirements O(102) higher luminosity complementarity to other intensity frontiers experiments (LHCb, BES III, ....); accurate theoretical predictions to compare to theory uncertainty matches the expected exp. precision theory uncertainty will match the expected exp. precision with expected progress in LQCD G. Isidori et al., Ann.Rev.Nucl.Part.Sci. 60, 355 (2010)

Summary The SuperKEKB and Belle II project approved Introduction PID Accelerator Calorimeter Vertex General Summary The SuperKEKB and Belle II project approved by the Japanese government Truly int. coll. with strong European participation Groundbreaking ceremony in November last year Both accelerator upgrade and detector re-building are well on track SuperKEKB will provide 50 ab-1 by 2022, Belle II detector with equal or better performance than Belle under higher backgrounds Next collaboration meeting: March 2012, open to everyone