The Carbon Cycle Data Assimilation System (CCDAS)

Slides:



Advertisements
Similar presentations
Land Surface Evaporation 1. Key research issues 2. What we learnt from OASIS 3. Land surface evaporation using remote sensing 4. Data requirements Helen.
Advertisements

The global Carbon Cycle - The Terrestrial Biosphere Dr. Peter Köhler Monday, , 11:15 – 13:00 Room: S 3032.
The Inverse Regional Ocean Modeling System:
Setup of 4D VAR inverse modelling system for atmospheric CH 4 using the TM5 adjoint model Peter Bergamaschi Climate Change Unit Institute for Environment.
Improving Understanding of Global and Regional Carbon Dioxide Flux Variability through Assimilation of in Situ and Remote Sensing Data in a Geostatistical.
P.Lewis (1) Gomez-Dans, J. (1), Kaminski, T. (2) ; Settle, J. (3), Quaife, T. (3), Gobron, N. (4), Styles, J. (5), Berger, M. (6) Data Assimilation of.
Exploitation of MODIS and MISR Surface Albedos in Support of SVAT Models LANDFLUX meeting, Toulouse, May 28-31, 2007 JRC – Ispra Bernard Pinty, T. Lavergne,
Optimal Retrieval of Vegetation Canopy Characteristics Using Operational MODIS and MISR Surface Albedo Products LMD, Paris, October 5, 2007 JRC – Ispra.
03/06/2015 Modelling of regional CO2 balance Tiina Markkanen with Tuula Aalto, Tea Thum, Jouni Susiluoto and Niina Puttonen.
Data Assimilation in the NCEO (National Centre for Earth Observation) Peter Jan van Leeuwen Data-Assimilation Research Centre DARC University of Reading.
Evaluating the Impact of the Atmospheric “ Chemical Pump ” on CO 2 Inverse Analyses P. Suntharalingam GEOS-CHEM Meeting, April 4-6, 2005 Acknowledgements.
NOCES meeting Plymouth, 2005 June Top-down v.s. bottom-up estimates of air-sea CO 2 fluxes : No winner so far … P. Bousquet, A. Idelkadi, C. Carouge,
A global Carbon Cycle Data Assimilation System (CCDAS) to infer atmosphere- biosphere CO 2 exchanges and their uncertainties Marko Scholze 1, Peter Rayner.
Improving and extending CMS land surface carbon flux products including estimates of uncertainties in fluxes and biomass. Jim Collatz, Randy Kawa, Lesley.
Assimilating observed seasonal cycles of CO2 to CASA model parameters
Application of Geostatistical Inverse Modeling for Data-driven Atmospheric Trace Gas Flux Estimation Anna M. Michalak UCAR VSP Visiting Scientist NOAA.
A global Carbon Cycle Data Assimilation System (CCDAS) and its link to CAMELS Marko Scholze 1, Peter Rayner 2, Wolfgang Knorr 3, Thomas Kaminski 4, Ralf.
Remote Sensing Data Assimilation for a Prognostic Phenology Model How to define global-scale empirical parameters? Reto Stöckli 1,2
Optimising ORCHIDEE simulations at tropical sites Hans Verbeeck LSM/FLUXNET meeting June 2008, Edinburgh LSCE, Laboratoire des Sciences du Climat et de.
Laboratoire des Sciences du Climat et de l'Environnement P. Peylin, C. Bacour, P. Ciais, H. Verbeek, P. Rayner Flux data to highlight model deficiencies.
Page 1© Crown copyright WP4 Development of a System for Carbon Cycle Data Assimilation Richard Betts.
1 Remote Sensing and Image Processing: 9 Dr. Hassan J. Eghbali.
CarboEurope, IMECC and GHG- Europe Mike Jones School of Natural Sciences Trinity College Dublin.
Results from the Carbon Cycle Data Assimilation System (CCDAS) 3 FastOpt 4 2 Marko Scholze 1, Peter Rayner 2, Wolfgang Knorr 1 Heinrich Widmann 3, Thomas.
Carbon, soil moisture and fAPAR assimilation Wolfgang Knorr Max-Planck Institute of Biogeochemistry Jena, Germany 1 Acknowledgments: Nadine Gobron 2, Marko.
Translation to the New TCO Panel Beverly Law Prof. Global Change Forest Science Science Chair, AmeriFlux Network Oregon State University.
Overview of Techniques for Deriving Emission Inventories from Satellite Observations Frascati, November 2009 Bas Mijling Ronald van der A.
Data Assimilation Working Group Dylan Jones (U. Toronto) Kevin Bowman (JPL) Daven Henze (CU Boulder) 1 IGC7 4 May 2015.
A Global Carbon Cycle Data Assimilation System (CCDAS) to Infer Atmosphere- Biosphere CO2 Exchanges and Their Uncertainties Marko Scholze1, Peter Rayner2,
CarboEurope IP Mid-Term Project Overview Executive Board: Ernst-Detlef Schulze (PI), Annette Freibauer, Riccardo Valentini, John Grace, Philippe.
1 CAMELS Carbon Assimilation and Modelling of the European Land Surface an EU Framework V Project (Part of the CarboEurope Cluster) CAMELS.
State-of-the-Art of the Simulation of Net Primary Production of Tropical Forest Ecosystems Marcos Heil Costa, Edson Luis Nunes, Monica C. A. Senna, Hewlley.
Terrestrial biosphere and global change: the carbon cycle at the land surface Han Dolman [ Wageningen, NL.
The use of δ 18 O in atmospheric CO 2 Matthias Cuntz Research School of Biological Sciences (RSBS), ANU, Canberra, Australia Philippe Ciais, Georg Hoffmann,
Integration of biosphere and atmosphere observations Yingping Wang 1, Gabriel Abramowitz 1, Rachel Law 1, Bernard Pak 1, Cathy Trudinger 1, Ian Enting.
Non-Linear Parameter Optimisation of a Terrestrial Biosphere Model Using Atmospheric CO 2 Observation - CCDAS Marko Scholze 1, Peter Rayner 2, Wolfgang.
Terrestrial Carbon Observations TCO Previous Strategy 1- better identify the potential end users, and their requirements 2- organize and coordinate reliable.
Inferring terrestrial CO 2 fluxes from a global-scale Carbon Cycle Data Assimilation System (CCDAS) Marko Scholze 1, Peter Rayner 2, Wolfgang Knorr 1,
Quantitative network design for biosphere model process parameters E. Koffi 1, P. Rayner 1, T. Kaminski 2, M. Scholze 3, M. Voßbeck 2, and R. Giering 2.
CAMELS CCDAS A Bayesian approach and Metropolis Monte Carlo method to estimate parameters and uncertainties in ecosystem models from eddy-covariance data.
FastOpt Quantitative Design of Observational Networks M. Scholze, R. Giering, T. Kaminski, E. Koffi P. Rayner, and M. Voßbeck Future GHG observation WS,
Estimates of Carbon Transfer coefficients Using Probabilistic Inversion for Three Forest Ecosystems in East China Li Zhang 1, Yiqi Luo 2, Guirui Yu 1,
Dublin - 18 June 2010 –CEOs LPV Phenology1 MERIS FAPAR: Towards Phenology Products Nadine Gobron, Jan Musial, Michel Verstraete and Wolfgang Knorr.
Atmospheric Inventories for Regional Biogeochemistry Scott Denning Colorado State University.
1 CAMELS CAMELS PROJECT OVERVIEW Motivation for CAMELS Deliverables Products Structure Peter Cox, Hadley Centre, Met Office.
Climate–Carbon Modelling, Assimilation & Prediction Wolfgang Knorr, QUEST NCEO/Carbon Fusion Sheffield, 29 February 2008.
CarboEurope: The Big Research Lines Annette Freibauer Ivan Janssens.
Data assimilation in Marko Scholze. Strictly speaking, there are so far no DA activities in QUEST, but CCDAS (as part of core team activities) CPDAS and.
CFusion and NCEO. NCEO Components Ciais et al IGOS-P Integrated Global Carbon Observing Strategy Global Carbon Data Assimilation System.
A data-driven model of the state of the African biosphere Martin Jung, Eric Thomas.
Success and Failure of Implementing Data-driven Upscaling Using Flux Networks and Remote Sensing Jingfeng Xiao Complex Systems Research Center, University.
FastOpt CAMELS A prototype Global Carbon Cycle Data Assimilation System (CCDAS) Wolfgang Knorr 1, Marko Scholze 2, Peter Rayner 3,Thomas Kaminski 4, Ralf.
Inverse Modeling of Surface Carbon Fluxes Please read Peters et al (2007) and Explore the CarbonTracker website.
Geogg124: Data assimilation P. Lewis. What is Data Assimilation? Optimal merging of models and data Models Expression of current understanding about process.
Contact © European Union, Monitoring the State of the Global Terrestrial Surfaces The state of vegetation is analysed using.
Earth Observation Data and Carbon Cycle Modelling Marko Scholze QUEST, Department of Earth Sciences University of Bristol GAIM/AIMES Task Force Meeting,
FastOpt A prototype Carbon Cycle Data Assimilation System (CCDAS) Inferring interannual variations of vegetation- atmosphere CO 2 fluxes Marko Scholze.
Page 1© Crown copyright 2004 Data Assimilation at the Met Office Hadley Centre, Met Office, Exeter.CTCD Workshop. 8 th Nov, 2005 Chris Jones.
1 Co-ordinator: Detlef Schulze (MPI for Biogeochemistry) Component Leaders: Riccardo Valentini, Philippe Ciais, Han Dolman, Martin Heimann, John Grace.
Yueyang Jiang1, John B. Kim2, Christopher J
Alexander Loew1, Mike Schwank2
Calibration of land surface models
CO2 sources and sinks in China as seen from the global atmosphere
(Towards) anthropogenic CO2 emissions through inverse modelling
Terrestrial-atmosphere (1)
Ecosystem Demography model version 2 (ED2)
CarboEurope Open Science Conference
Adam Butler & Glenn Marion, Biomathematics & Statistics Scotland •
Addressing GHG Validation in GHG
The global carbon cycle for the 1990s, showing the main annual fluxes in GtC yr–1: pre-industrial ‘natural’ fluxes in black and ‘anthropogenic’ fluxes.
Presentation transcript:

The Carbon Cycle Data Assimilation System (CCDAS) CarboEurope IP Integration Meeting, 22–24 August 2005 The Carbon Cycle Data Assimilation System (CCDAS) Wolfgang Knorr QUEST/U Bristol, formerly Max-Planck Institute for Biogeochemistry, Jena with contributions from: Marko Scholze (QUEST), Jens Kattge (MPI Jena), Nadine Gobron (JRC/IES, Ispra), Thomas Kaminski, Ralf Giering (FastOpt) and Peter Rayner (LSCE)

Overview Carbon Cycle Observations Assimilation of Eddy Covariance Data Assimilation of Satellite "Greenness" Assimilation of Atmospheric CO2 Data Outlook

Fluxnet Eddy Covariance Network

Key Remotely Sensed Variables ITOC ITOC FAPAR: [(ITOC+IS)–(ITOC+IS)] / ITOC canopy soil IS IS

Atmospheric CO2 Measurements CCDAS inverse modelling period ... and more stations in CCDAS

Carbon Cycle Data Assimilation System (CCDAS) satellite FAPAR CCDAS Step 1 full BETHY atm. CO2 eddy flux CO2 & H2O soil water LAI veg. distr. CCDAS Step 2 BETHY+TM2 energy balance/ photosynt. params & error cov. Monte Carlo Param. Inversion full BETHY CO2 and water fluxes + uncert. 2°x2° collaborators: T. Kaminski, R. Giering (FastOpt); P. Rayner (CSIRO) B. Pinty, N. Gobron, M. Verstraete (JRC, Ispra)

Overview Carbon Cycle Observations Assimilation of Eddy Covariance Data Assimilation of Satellite "Greenness" Assimilation of Atmospheric CO2 Data Outlook

Carbon Cycle Data Assimilation System (CCDAS) satellite FAPAR CCDAS Step 1 full BETHY atm. CO2 eddy flux CO2 & H2O soil water LAI veg. distr. CCDAS Step 2 BETHY+TM2 energy balance/ photosynt. params & error cov. Monte Carlo Param. Inversion full BETHY CO2 and water fluxes + uncert. 2°x2°

a priori error covariance error covariance matrix The Cost Function Measure of the mismatch (cost function): measurements model diagnostics assumed model parameters a priori parameter values a priori error covariance matrix of parameters error covariance matrix of measurements BETHY met. data eddy flux CO2 & H2O (7 selected days) J parameters aim: sample exp{–J(m)} =probability density function

Convergence of parameters (BETHY model) Convergence of Cost Function, diagnostic vs. parameter (=Bayes) space Fig. 1, Knorr & Kattge, GCB 2005

Fig. 4, Knorr & Kattge, GCB 2005

1–sopt/sprior Fig. 3, Knorr & Kattge 2005 C4 grassland [FIFE] conifer forest [Loobos] 1–sopt/sprior photosynth. respiration energy balance Fig. 3, Knorr & Kattge 2005 stomata

Fig. 5, Knorr & Kattge, GCB 2005

Overview Carbon Cycle Observations Assimilation of Eddy Covariance Data Assimilation of Satellite "Greenness" Assimilation of Atmospheric CO2 Data Outlook

Carbon Cycle Data Assimilation System (CCDAS) atm. CO2 satellite FAPAR eddy flux CO2 & H2O soil water LAI veg. distr. CCDAS Step 2 BETHY+TM2 energy balance/ photosynt. params & error cov.. Monte Carlo Param. Inversion full BETHY CCDAS Step 1 full BETHY CO2 and water fluxes + uncert. 2°x2° collaborators: B. Pinty, N. Gobron, M. Verstraete (JRC, Ispra)

a priori error covariance error covariance matrix The Cost Function Measure of the mismatch (cost function): measurements model diagnostics assumed model parameters a priori parameter values a priori error covariance matrix of parameters error covariance matrix of measurements aim: minimize J(m) at each grid cell: m: relative contributions of vegetation types met. data BETHY J FAPAR parameters

Step 1: FAPAR Assimilation prior optimized cover fraction of PFT: evergreen coniferous tree

Step 1: FAPAR Assimilation relative cover fraction: tropical evergreen trees optimized prior deforestation?

Overview Carbon Cycle Observations Assimilation of Eddy Covariance Data Assimilation of Satellite "Greenness" Assimilation of Atmospheric CO2 Data Outlook

Carbon Cycle Data Assimilation System (CCDAS) satellite FAPAR CCDAS Step 1 full BETHY atm. CO2 eddy flux CO2 & H2O soil water LAI veg. distr. CCDAS Step 2 reduced BETHY +TM2 params & error cov. Monte Carlo Param. Inversion full BETHY Background CO2 fluxes* CO2 and water fluxes + uncert. 2°x2° Uses adjoint and Hessian generated by TAF of T. Kaminski, R. Giering (FastOpt); *ocean: Takahashi et al. (1999), LeQuere et al. (2000); emissions: Marland et al. (2001), Andres et al. (1996); land use: Houghton et al. (1990)

a priori error covariance error covariance matrix The Cost Function Measure of the mismatch (cost function): measurements model diagnostics assumed model parameters a priori parameter values a priori error covariance matrix of parameters error covariance matrix of measurements aim: minimize J(m): m: 58 BETHY parameters met. data BETHY+TM2 J atm. CO2 parameters

Prior/Optimized Fluxes Table 4, Rayner et al., GBC 2005

Error Covariances in Parameters J(x) Second Derivative (Hessian) of J(m): ∂2J(m)/∂m2 yields curvature of J, provides estimated uncertainty in mopt Figure taken from Tarantola '87 Space of m (model parameters)

CCDAS relative error reduction 1–sopt/sprior photosynth. plant resp. soil resp. from Table 1, Rayner et al., GBC 2005

Error Covariances in Diagnostics Error covariance of diagnostics, y, after optimisation (e.g. CO2 fluxes): adjoint or tangent linear model error covariance of parameters

gC m-2 yr -1 mean NEP 1980–2000, CCDAS uncertainty in mean NEP 1980–2000, CCDAS gC m-2 yr -1 Fig. 9/10, Rayner et al., GBC 2005

Outlook More data: inventories, regional inversions and budgets, satellite CO2 columns, isotopes, O2/N2 More components: ocean (“free” optimization indicates no big changes) More processes: fire (under construction) Prognostic step...