Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H

Slides:



Advertisements
Similar presentations
Microsolvation of  -propiolactone as revealed by Chirped-Pulse Fourier Transform Microwave Spectroscopy Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski,
Advertisements

CHIRPED-PULSE FOURIER-TRANSFORM MICROWAVE SPECTROSCOPY OF THE PROTOTYPICAL C-H…π INTERACTION: THE BENZENE…ACETYLENE WEAKLY BOUND DIMER Nathan W. Ulrich,
1 THz vibration-rotation-tunneling (VRT) spectroscopy of the water (D 2 O) 3 trimer : --- the 2.94THz torsional band L. K. Takahashi, W. Lin, E. Lee, F.
AUSTIN L. MCJUNKINS, K. MICHELLE THOMAS, APRIL RUTHVEN, AND GORDON G. BROWN Department of Science and Mathematics, Coker College, 300 E College Ave., Hartsville,
The Search is Over: Design and Applications of a Chirped Pulse Fourier Transform Microwave (CP- FTMW) Spectrometer for Ground State Rotational Spectroscopy.
ROTATIONAL SPECTRA OF THE TRIFLUORO ETHANOL (TFE) -WATER CLUSTERS AND THE TFE DIMERS Javix Thomas and Yunjie Xu Department of Chemistry, University of.
Room-Temperature Chirped-Pulse Microwave Spectrum of 2-Methylfuran
Construction of a 480 MHz Chirped-Pulse Fourier-Transform Microwave Spectrometer: The Rotational Spectra of Divinyl Silane and 3,3-Difluoropentane Daniel.
Galen Sedo, Jamie L. Doran, Shenghai Wu, Kenneth R. Leopold Department of Chemistry, University of Minnesota A Microwave Determination of the Barrier to.
Chirped-pulsed FTMW Spectrum of 4-Fluorobenzyl Alcohol
Two-Dimensional Chirped-Pulse Fourier Transform Microwave Spectroscopy Amanda Shirar June 22, th OSU International Symposium on Molecular Spectroscopy.
1 Broadband Chirped-Pulse Fourier- Transform Microwave (CP-FTMW) Spectroscopic Investigation of the Structures of Three Diethylsilane Conformers Amanda.
Observation of the weakly bound (HCl) 2 H 2 O cluster by chirped-pulse FTMW spectroscopy Zbigniew Kisiel, a Alberto Lesarri, b Justin Neill, c Matt Muckle,
DANIEL P. ZALESKI, JUSTIN L. NEILL, MATTHEW T. MUCKLE, AMANDA L. STEBER, NATHAN A. SEIFERT, AND BROOKS H. PATE Department of Chemistry, University of Virginia,
Microwave Spectrum of Hydrogen Bonded Hexafluoroisopropanol  water Complex Abhishek Shahi Prof. E. Arunan Group Department of Inorganic and Physical.
Microwave Spectroscopic Investigations of the C—H…  Containing Complexes CH 2 F 2 …Propyne and CH 2 ClF…Propyne Rebecca A. Peebles, Sean A. Peebles, Cori.
THE PURE ROTATIONAL SPECTRA OF THE TWO LOWEST ENERGY CONFORMERS OF n-BUTYL ETHYL ETHER. B. E. Long, G. S. Grubbs II, and S. A. Cooke RH13.
Chirped-pulse, FTMW spectroscopy of the lactic acid-H 2 O system Zbigniew Kisiel, a Ewa Białkowska-Jaworska, a Daniel P. Zaleski, b Justin L. Neill, b.
Rotational Spectra and Structure of Phenylacetylene-Water Complex and Phenylacetylene-H 2 S (preliminary) Mausumi Goswami, L. Narasimhan, S. T. Manju and.
Microwave Spectrum and Molecular Structure of the Argon-(E )-1-Chloro-1,2-Difluoroethylene Complex Mark D. Marshall, Helen O. Leung, Hannah Tandon, Joseph.
†) Currently at Department of Chemistry, University of Manitoba A Microwave Study of the HNO 3 -N(CH 3 ) 3 Complex Galen Sedo, † Kenneth R. Leopold Department.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
Rotational Spectra Of Cyclopropylmethyl Germane And Cyclopropylmethyl Silane: Dipole Moment And Barrier To Methyl Group Rotation Rebecca A. Peebles, Sean.
Microwave Spectrum of the Ethanol-Water Dimer
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
S TRUCTURE D ETERMINATION AND CH···F I NTERACTIONS IN H 2 C=CHF···H 2 C=CF 2 B Y F OURIER - T RANSFORM M ICROWAVE S PECTROSCOPY Rachel E. Dorris, Rebecca.
Broadband Microwave Spectroscopy to Study the Structure of Odorant Molecules and of Complexes in the Gas Phase Sabrina Zinn, Chris Medcraft, Thomas Betz,
Microwave Spectra of cis-1,3,5- Hexatriene and Its 13 C Isotopomers; An r s Substitution Structure for the Carbon Backbone Richard D. Suenram, Brooks H.
Chirped-Pulse Microwave Spectroscopy in the Undergraduate Chemistry Curriculum Sydney Gaster, Taylor Hall, Sean Arnold, Deondre Parks, Gordon Brown Department.
Jun 18th rd International Symposium on Molecular Spectroscopy Microwave spectroscopy o f trans-ethyl methyl ether in the torsionally excited state.
Steven T. Shipman, 1 Leonardo Alvarez-Valtierra, 1 Justin L. Neill, 1 Brooks H. Pate, 1 Alberto Lesarri, 2 and Zbigniew Kisiel 3 Design and performance.
Nathan Seifert, Wolfgang Jäger University of Alberta
CRISTOBAL PEREZ, MARINA SEKUTOR, ANDREY A
Max Planck Institute for the Structure and Dynamics of Matter
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
Juliane Heitkämper, John C Mullaney, Nick Walker
ROTATIONAL SPECTROSCOPY OF THE METHYL GLYCIDATE-WATER COMPLEX
Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H
A Chirped Pulse Fourier Transform Microwave (CP-FTMW) Spectrometer with Laser Ablation Source to Search for Actinide-Containing Molecules and Noble Metal.
Structure and tunneling dynamics of gauche-1,3-butadiene
72nd International Symposium on Molecular Spectroscopy (ISMS 2017)
Mark D. Marshall, Helen O. Leung, Craig J. Nelson & Leonard H. Yoon
1Kanagawa Institute of Technology 3Georgia Southern University
L. Evangelisti,a,c C. Perez,b,c B.H. Patec
A.J. Barclay, S. Sheybani-Deloui, N. Moazzen-Ahmadi
Characterization of Intermolecular Interactions in the
G. S. Grubbs II*, S. A. Cooke⧧, and Stewart E. Novick*,
The CP-FTMW Spectrum of Verbenone
The CP-FTMW Spectrum of Bromoperfluoroacetone
CHIRPED PULSE AND CAVITY FOURIER TRANSFORM MICROWAVE (CP-FTMW AND FTMW) INVESTIGATIONS INTO 3-BROMO-1,1,1,2,2-PENTAFLUOROPROPANE; A MOLECULE OF ATMOSPHERIC.
CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF
Microwave spectra of Ar...AgI and H2O...AgI produced by laser ablation
CAITLIN BRAY CARA RAE RIVERA E. A. ARSENAULT DANIEL A. OBENCHAIN
A STUDY OF THE FORMAMIDE-(H2O)3 COMPLEX BY MICROWAVE SPECTROSCOPY
Microwave spectra of 1- and 2-bromobutane
G. S. Grubbs IIa, Derek S. Frankb, Daniel A. Obenchainb, S. A
CHIRALITY DETERMINATION FROM PULSED-JET FOURIER TRANSFORM
THE STRUCTURE OF PHENYLGLYCINOL
Fourier transform microwave spectra of n-butanol and isobutanol
Ashley M. Anderton, Cori L. Christenholz, Rachel E. Dorris, Rebecca A
The rotational spectrum of the urea isocyanic acid complex
The Conformational Landscape of Serinol
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
ASSIGNMENT OF THE PERFLUOROPROPIONIC ACID-FORMIC ACID COMPLEX AND THE DIFFICULTIES OF INCLUDING HIGH Ka TRANSITIONS Daniel A. Obenchain, Eric A. Arsenault,
Michal M. Serafin, Sean A. Peebles
John Mullaney Newcastle University
Halogen bonding vs hydrogen bonding: CHF2INH3 vs CHF2IN(CH3)3
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
COMPREHENSIVE ANALYSIS OF INTERSTELLAR
Presentation transcript:

Weak Interactions and CO2  Microsolvation in the cis-1,2-difluoroethylene...CO2  Complex Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H. Pate,b William C. Trendell,a Sean A. Peeblesa a Department of Chemistry, Eastern Illinois University, Charleston, IL, USA b Department of Chemistry, University of Virginia, Charlottesville, VA, USA

Why CO2? Weak hydrogen bonding Designing approaches to CO2 sequestration Properties of supercritical fluid Microsolvation Trifluoroethylene (TFE) Difluoroethylene (1,1-DFE) Fluoroethylene (FE) VF-CO2: C. L. Christenholz, et al., J. Phys. Chem. A, 118, (2014), 8765. DFE-CO2: A. M. Anderton, et al., J. Phys. Chem. A, 120, (2016), 247. TFE-CO2: R. Dorris, et al, J. Phys. Chem. A, 120, (2016), 7865.

Next Steps… Additional dimers Move towards larger clusters

Predicted 1,2-DFE-CO2 Structure Observed side-bonded structures Initial prediction for 1,2-DFE-CO2 Gaussian 09: MP2/6-311++G(2d,2p)

Oscilloscope (for data collection) Tektronix TDS5054B 500 MHz Oscilloscope AFG3251 Function Generator (0-240 MHz) HP8673G MW Synthesizer 2-26.5 GHz Molecular Expansion Vacuum Chamber 10 W Solid State Amp Picoammeter Gas sample injected Electron gun power Diffusion pump Supersonic nozzle Oscilloscope (for data collection) Reduced Bandwidth Chirped-Pulse Fourier-Transform Microwave (CP-FTMW) Spectrometer 480 MHz bandwidth, scan in 240 MHz steps Calculate absolute frequencies and assemble into full 11 GHz spectrum using LabVIEW Scan a full (10k average) spectrum in 1 day D. A. Obenchain, A. A. Elliott, A.L. Steber, R. A. Peebles, S. A. Peebles, C. J. Wurrey, G. A. Guirgis, J. Mol. Spectrosc., 261, (2010), 35.

Assignment Process Observed “Stacked” prediction “Side” prediction

Observed a c a c Predicted a c 10000 9000 8000 Fitted

Fitted Constants 0+ 0- A / MHz 3810.154(14) 3809.984(14) B / MHz   0+ 0- A / MHz 3810.154(14) 3809.984(14) B / MHz 1614.4404(25) 1614.4991(21) C / MHz 1456.786(14) 1456.867(14) DJ / kHz 3.490(10) 3.451(10) DJK / kHz 14.940(67) 15.216(60) DK / kHz -12.02(41) dJ / kHz 0.3322(70) dK / kHz -12.72(32) Fac / MHz 167.828(97) DE / MHz 333.2433(19) N 51 Durms / kHz 2.2

Fitted Constants 0+ 0- A / MHz 3810.154(14) 3809.984(14) B / MHz   0+ 0- A / MHz 3810.154(14) 3809.984(14) B / MHz 1614.4404(25) 1614.4991(21) C / MHz 1456.786(14) 1456.867(14) DJ / kHz 3.490(10) 3.451(10) DJK / kHz 14.940(67) 15.216(60) DK / kHz -12.02(41) dJ / kHz 0.3322(70) dK / kHz -12.72(32) Fac / MHz 167.828(97) DE / MHz 333.2433(19) N 51 Durms / kHz 2.2

(Very) preliminary barrier = 42 cm-1 Fitted Constants   0+ 0- A / MHz 3810.154(14) 3809.984(14) B / MHz 1614.4404(25) 1614.4991(21) C / MHz 1456.786(14) 1456.867(14) DJ / kHz 3.490(10) 3.451(10) DJK / kHz 14.940(67) 15.216(60) DK / kHz -12.02(41) dJ / kHz 0.3322(70) dK / kHz -12.72(32) Fac / MHz 167.828(97) DE / MHz 333.2433(19) N 51 Durms / kHz 2.2 (Very) preliminary barrier = 42 cm-1

Structure 0+ 0- A / MHz 3810.154(14) 3809.984(14) 3734.7 8002.3   0+ 0- A / MHz 3810.154(14) 3809.984(14) 3734.7 8002.3 B / MHz 1614.4404(25) 1614.4991(21) 1559.1 868.2 C / MHz 1456.786(14) 1456.867(14) 1403.4 783.2 Paa / u Å2 263.655(2) 263.637(2) 274.5 582.1 Pbb / u Å2 83.259(2) 83.258(2) 85.6 63.2 Pcc / u Å2 49.382(2) 49.388(2) 49.7 0.0 ma / D 2.13(3) 2.2 0.02 mb / D 0.00 2.4 mc / D 1.13(4) 1.4 Gaussian 09: MP2/6-311++G(2d,2p)

Structure Paa for DFE = 85.30534(4) u Å2 m for DFE = 2.42 D 0+ 0-   0+ 0- A / MHz 3810.154(14) 3809.984(14) 3734.7 8002.3 B / MHz 1614.4404(25) 1614.4991(21) 1559.1 868.2 C / MHz 1456.786(14) 1456.867(14) 1403.4 783.2 Paa / u Å2 263.655(2) 263.637(2) 274.5 582.1 Pbb / u Å2 83.259(2) 83.258(2) 85.6 63.2 Pcc / u Å2 49.382(2) 49.388(2) 49.7 0.0 ma / D 2.13(3) 2.2 0.02 mb / D 0.00 2.4 mc / D 1.13(4) 1.4 mtot / D 2.41(5) Paa for DFE = 85.30534(4) u Å2 m for DFE = 2.42 D Monomer rotational constants: N. C. Craig, et al, Int. J. Quantum Chem., 95, (2003), 837. Monomer dipole moment: V. W. Laurie, J. Chem. Phys., 34, (1961), 291. Gaussian 09: MP2/6-311++G(2d,2p)

What’s next? Larger clusters… (d) (e) (a) (b) (c) (i) (h) (f) (g) What’s next? Symmetry adapted perturbation theory (SAPT) Better understanding of energetics Larger clusters… Figure adapted from: R. Dorris, et al, J. Phys. Chem. A, 120, (2016), 7865.

Ees Eind Edisp Eex ESAPT EMP2 (BSSE) X…CO2 [kJ mol-1 ] X = Ees Eind Edisp Eex ESAPT EMP2 (BSSE) FE (side) –8.33 (52.0%) –1.34 (8.3%) –6.36 (39.7%) 8.33 –7.70 –6.41 FE (top) –7.78 (49.7%) –1.30 (8.2%) –6.61 (42.1%) 8.03 –7.66 –6.30 FE (stacked) –6.65 (42.5%) –0.96 (6.1%) –8.02 (51.3%) 8.43 –7.19 –6.44   1,1-DFE (top) –5.69 (44.8%) –1.00 (7.8%) –6.02 (47.4%) 6.49 –6.22 –5.10 1,1-DFE (stacked) –4.43 (34.8%) –0.78 (6.1%) –7.50 (59.1%) 7.35 –5.35 –4.86 cis-1,2-DFE (side) –7.91 (51.0%) –1.34 (8.6%) –6.28 (40.5%) 7.99 –7.54 –6.33 cis-1,2-DFE (stacked) –7.29 (44.6%) –1.11 (6.8%) –7.96 (48.7%) 8.38 –7.97 –6.81 TFE (side) –7.61 (50.2%) –1.30 (8.5%) –6.23 (41.3%) 7.82 –7.32 –6.16 TFE (top) –6.11 (45.7%) –1.21 (9.0%) –6.07 (45.3%) 6.78 –6.61 –5.39 TFE (stacked) –5.84 (41.2%) –0.87 (6.1%) –7.47 (52.7%) 7.52 –6.66 –5.69 Table adapted from: R. Dorris, et al, J. Phys. Chem. A, 120, (2016), 7865.

Building up CO2 solvation shells 387 cm-1 0 cm-1 319 cm-1 24 cm-1 MP2/6-311++G(2d,2p) using Gaussian 09

New Fluoroethylene-CO2 Scan – 1 million FIDs FE-only lines cut

1552.1048(9) 1169.4589(4) 847.2575(3) 351.5135(3) 244.9746(3) 80.6342(3) Strongest Less Strong Weak   Top-stack Side-stack Stack Side-top A / MHz 1618.3 1734.3 2933.3 1626.9 B / MHz 1173.9 1107.4 643.5 922.8 C / MHz 881.2 808.4 609.4 588.8 Paa / u Å2 345.9 395.1 721.2 547.6 Pbb / u Å2 227.7 230.1 108.1 310.7 Pcc / u Å2 84.6 61.3 64.2 0.0 ma / D 1.1 0.8 0.03 mb / D 1.0 0.5 1.5 mc / D 0.7 DE / cm-1 24 319 387 1660.3513(1) 1109.7647(1) 785.7773(1) 397.08513(4) 246.07297(4) 58.30781(4) Medium Stronger

Summary and Conclusions cis-1,2-DFE-CO2 is nonplanar CO2 inversion motion Work using Meyer’s 1-dimensional model to determine barrier is in progress Two FE-CO2-CO2 trimers observed Nearly isoenergetic Tetramers?

Acknowledgements National Science Foundation RUI1214070 (2012-2017) RUI1664900 (2017-2020) Pate Group (University of Virginia) Eastern Illinois University spcat 