Charge Oscillation in C-O Stretching Vibrations: A Comparison of CO2 Anion and Carboxylate Functional Groups Michael C. Thompson, J. Mathias Weber 72nd.

Slides:



Advertisements
Similar presentations
Infrared spectroscopy of metal ion-water complexes
Advertisements

Understanding Complex Spectral Signatures of Embedded Excess Protons in Molecular Scaffolds Andrew F. DeBlase Advisor: Mark A. Johnson 68 th Internatinal.
Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,
17.1 Mass Spectrometry Learning Objectives:
Rotational Spectra Simplest Case: Diatomic or Linear Polyatomic molecule Rigid Rotor Model: Two nuclei joined by a weightless rod J = Rotational quantum.
Vibrational Transitions
Lecture 3 INFRARED SPECTROMETRY
Spectral Regions and Transitions
Infrared Spectroscopy of Doubly-Charged Metal-Water Complexes
 PART Requirements for Spectroscopic Techniques for Polymers 1. High resolution 2. High sensitivity (>1%) 3. High selectivity between molecular.
INFRARED SPECTROSCOPIC STUDY ON FERMI RESONANCE OF THE EXCESS PROTON VIBRATION IN BINARY CLUSTERS Ryunosuke SHISHIDO, Asuka FUJII Department of Chemistry,
IR-Spectroscopy Introduction Theory Instrumentation Sample preparation Table and charts.
Probing isomer interconversion in anionic water clusters using an Ar-mediated pump- probe approach T. L. Guasco, G. H. Gardenier, L. R. McCunn, B. M. Elliott,
Infrared Spectroscopy and Mass Spectroscopy
Infrared Photodissociation Spectroscopy of Silicon Carbonyl Cations
Infrared Photodissociation Spectroscopy of Aluminum Benzene Cation Complexes Nicki Reishus, Biswajit Bandyopadhyay and Michael A. Duncan Department of.
Important concepts in IR spectroscopy
Pulsed-jet discharge matrix isolation and computational study of Bromine atom complexes: Br---BrXCH 2 (X=H,Cl,Br) OSU 66 th International Symposium on.
Photoinitiation of intra-cluster electron scavenging: An IR study of the CH 3 NO 2 ·(H 2 O) 6 anion Kristin Breen, Timothy Guasco, and Mark Johnson Department.
Electronic Spectroscopy of Palladium Dimer (Pd 2 ) 68th OSU International Symposium on Molecular Spectroscopy Yue Qian, Y. W. Ng and A. S-C. Cheung Department.
1 Infrared Spectroscopy of Ammonium Ion MG03: Sub-Doppler Spectroscopy of ND 3 H + Ions in the NH Stretch Mode MG04: Infrared Spectroscopy of Jet-cooled.
Electronic Transitions of Palladium Monoboride and Platinum Monoboride Y.W. Ng, H.F. Pang, Y. S. Wong, Yue Qian, and A. S-C. Cheung Department of Chemistry.
Department of Chemistry, University of Georgia, Athens, GA National Science Foundation Infrared.
Multiple Photon Absorption in Hydrated Cesium Ion Clusters Jordan Beck, Jim Lisy June 17,2008 OSU International Symposium on Molecular Spectroscopy.
Proton Sponges: A Simple Organic Motif for Revealing the Quantum Structure of the Intramolecular Proton Bond H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+
Infrared Spectroscopy & Structures of Mass-Selected Rhodium Carbonyl & Rhodium Dinitrogen Cations Heather L. Abbott, 1 Antonio D. Brathwaite 2 and Michael.
P. D. CARNEGIE, B. BANDYOPADHYAY AND M. A. DUNCAN
Ohio State (Current and recent): Laura Dzugan Jason FordSamantha Horvath Meng Huang Zhou LinMelanie Marlett Bernice Opoku-AgyemanAndrew PetitBethany Wellen.
Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.
Proton Sponges: A Rigid Organic Scaffold to Reveal the Quantum Structure of the Intramolecular Proton Bond Andrew F. DeBlase, Michael T. Scerba, Thomas.
IR Spectroscopy Wave length ~ 100 mm to 1 mm
Infrared Photodissociation Spectroscopy of Aluminum Benzene Cation Complexes Nicki Reishus, Biswajit Bandyopadhyay and Michael A. Duncan Department of.
Infrared Resonance Enhanced Photodissociation of Au + (CO) n Complexes in the Gas Phase Joe Velasquez, III, E. Dinesh Pillai and Michael A. Duncan Department.
EXAMPLE THE SPECTRUM OF HCl SHOWS A VERY INTENSE ABSORPTION BAND AT 2886 cm -1 AND A WEAKER BAND AT 5668 cm -1. CALCULATE x e, ṽ o, THE FORCE CONSTANT.
Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,
Anomalous CH Stretch Intensity Effects in Halomethyl Radicals: “Charge-Sloshing” vs. Bond- Dipole Contributions to IR Transition Moments E.S. Whitney,
Main Title Manori Perera 1 and Ricardo Metz University of Massachusetts Amherst 64 th International Symposium on Molecular Spectroscopy June 25th, 2009.
D. Zhao, K.D. Doney, H. Linnartz Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, the Netherlands T he 3 μm Infrared Spectra.
Gas Phase Infrared Spectroscopy of Protonated Species Department of Chemistry University of Georgia Athens Georgia,
Infrared Spectra of Anionic Coinage Metal-Water Complexes J. Mathias Weber JILA and Department of Chemistry and Biochemistry University of Colorado at.
How Do Networks of Water Accommodate an Excess Electron?, Joseph R. Roscioli, and Mark A. Johnson Nathan I. Hammer, Joseph R. Roscioli, and Mark A. Johnson.
1 Increasing frequency CH 2 =CH-CH=CH 2 Absorption spectrum for 1,3-butadiene.
Heavy Atom Vibrational Modes and Low-Energy Vibrational Autodetachment in Nitromethane Anions Michael C. Thompson, Joshua H. Baraban, Devin A. Matthews,
Asymmetry of M + (H 2 O)RG Complexes, (M=V, Nb) Revealed with Infrared Spectroscopy Timothy B Ward, Evangelos Miliordos, Sotiris Xantheas, Michael A Duncan.
IR Spectroscopy CHM 411 Suroviec. I. Theory of IR Spectroscopy Frequency of absorbed radiation is the molecular vibration frequency responsible for absorption.
INFARED SPECTROSCOPY OF Mn(CO 2 ) n − CLUSTER ANIONS Michael C Thompson, Jacob Ramsay and J. Mathias Weber June 24, th International Symposium.
Lecture 3 Mass Spectrometry and Infrared Spectroscopy.
Introduction to Infrared Spectroscopy
Analysis of Hydrogen Bonding in the OH Stretch Region of Protonated Water Clusters Laura C. Dzugan and Anne B. McCoy June 26, 2015.
Probing the vibrational spectroscopy of the deprotonated thymine radical by photodetachment and state-selective autodetachment photoelectron spectroscopy.
Near-Infrared Spectroscopy of Small Protonated Water Clusters
Helen K. Gerardi1, Andrew F. DeBlase1, Xiaoge Su2, Kenneth D
Vibrational frequency :
INFRARED SPECTROSCOPY OF DISILICON-CARBIDE, Si2C
60th International Symposium on Molecular Spectroscopy
Electronic Spectrum of Cryogenic Ruthenium-Tris-Bipyridine Dications
Leah G. Dodson, Michael C. Thompson, J. Mathias Weber
CO Stark Shift to Probe the Ionic Liquid-Ag Interface
E. D. Pillai, J. Velasquez, P.D. Carnegie, M. A. Duncan
Vibrational Spectroscopy and Theory of Cu+(CH4)n and Ag+(CH4)n (n=1-6)
Analytical methods Prepared By Dr. Biswajit Saha.
INFRARED SPECTRA OF ANIONIC COBALT-CARBON DIOXIDE CLUSTERS
PROBING THE MOLECULAR DYNAMICS OF A Cu(CD3OD) CLUSTER WITH
m1 VIBRATIONAL THEORY p.55 bonds ~ springs E = ½ kx2 m2 x is + or -
Instrumental Analysis
Stepwise Internal Energy Control for Protonated Methanol Clusters
Matrix representative for C2 operation on H2O atom positions
Sp Hybrid Orbitals.
Designation and numbering of normal vibrations (Wilson numbering):
IR-Spectroscopy Introduction Theory Instrumentation Sample preparation
Presentation transcript:

Charge Oscillation in C-O Stretching Vibrations: A Comparison of CO2 Anion and Carboxylate Functional Groups Michael C. Thompson, J. Mathias Weber 72nd International Symposium on Molecular Spectroscopy Urbana, IL June 19-23, 2017 M.C. Thompson, J. M. Weber, Chem. Phys. Lett. 683 (2017) 586–590

Introduction Fundamental characteristics of vibrational transitions: Frequency Intensity  dependence of charge distribution on molecular coordinates !

Introduction CO2 containing molecules and complexes interesting for CO2 reduction  conversion of CO2 into chemical fuels  series of experiments on IR spectroscopy of anionic metal-CO2 clusters [M(CO2)n]- and related species CO stretching vibrations are important characteristic vibrations for molecules containing “CO oscillators” – fundamental information on  structure and symmetry  charge distribution and how it depends on molecular coordinates A.D. Boese et al., JCP 122 (2005) 154301 B.J. Knurr & JMW, JACS 134 (2012) 18804−18808 B.J. Knurr & JMW, J. Phys. Chem. A 117 (2013) 10764–10771 B.J. Knurr & JMW, J. Phys. Chem. A 118 (2014) 4056 – 4062 B.J. Knurr & JMW, J. Phys. Chem. A 118 (2014) 8753-8757 B.J. Knurr & JMW, J. Phys. Chem. A, 118 (2014) 10246-10251 B.J. Knurr & JMW, J. Phys. Chem. A, 119 (2015) 843–850 M.C. Thompson, J. Ramsay & JMW, Angew. Chem. Int. Ed., 55 (2016) 15171-15174 M.C. Thompson, L.G. Dodson & JMW, J. Phys. Chem. A 121 (2017) 4132-4138 M.C. Thompson & JMW, in preparation L.G. Dodson, M.C. Thompson & JMW, in preparation

Introduction Electronic Structure of CO2: Walsh Diagram Antisymm. CO stretch IR active OCO bend IR active Symm. CO stretch IR inactive

Introduction In CO2 anions and COO- functional groups: Excess electron in antibonding orbital  CO bonds are weakened  CO stretching frequencies shift to the red CO2- is bent symmetric CO stretching vibration becomes IR active

Note that OCO bond angles are similar! Introduction Follow frequencies and intensities of symmetric and antisymmetric stretching vibrations in CO2- and COO- functional groups! CO2- HCOO- AgCOO- BiCOO- Note that OCO bond angles are similar!

Experimental Method: IR Photodissociation cluster + h hot cluster fragments CO2-·(CO2)7 CO2-·(CO2)6 + CO2 HCOO-·Ar HCOO- + Ar AgCOO-·(CO2)4 AgCOO-·(CO2)3 + CO2 BiCOO-·(CO2)3 BiCOO-·(CO2)2 + CO2 J.-W. Shin, N. Hammer, M. A. Johnson, H. Schneider, A. N. Gloess, JMW, J. Phys. Chem. A 109 (2005) 3146 B.J. Knurr & JMW, J. Phys. Chem. A 117 (2013) 10764–10771 M. C. Thompson, J. Ramsay, JMW, Angew. Chem. Int. Ed., 55 (2016) 15171-15174

Experimental Setup Nd:YAG IR-OPO/OPA electron gun 600 – 4500 cm-1 0.1-10 mJ / 5 ns IR-OPO/OPA mass gate power meter ion source

Experimental Spectra of M-COO- CO2-·(CO2)7 M.C. Thompson, J. M. Weber, Chem. Phys. Lett. 683 (2017) 586–590

Experimental Spectra of M-COO- CO2-·(CO2)7 M.C. Thompson, J. M. Weber, Chem. Phys. Lett. 683 (2017) 586–590

Experimental Spectra of M-COO- CO2-·(CO2)7 M.C. Thompson, J. M. Weber, Chem. Phys. Lett. 683 (2017) 586–590

Experimental Spectra of M-COO- CO2-·(CO2)7 HCOO-·Ar AgCOO-·(CO2)4 BiCOO-·(CO2)3 M.C. Thompson, J. M. Weber, Chem. Phys. Lett. 683 (2017) 586–590

Experimental Spectra of M-COO- CO2-·(CO2)7 HCOO-·Ar AgCOO-·(CO2)4 BiCOO-·(CO2)3 M.C. Thompson, J. M. Weber, Chem. Phys. Lett. 683 (2017) 586–590

Experimental Spectra of M-COO- CO2-·(CO2)7 HCOO-·Ar AgCOO-·(CO2)4 BiCOO-·(CO2)3 M.C. Thompson, J. M. Weber, Chem. Phys. Lett. 683 (2017) 586–590

Experimental Spectra of M-COO- Symmetric and antisymmetric CO stretching modes (fundamental transitions) of target ions (and others) Intensity ratio Is/Ias changes drastically! CO2-·(CO2)7 HCOO-·Ar AgCOO-·(CO2)4 BiCOO-·(CO2)3 M.C. Thompson, J. M. Weber, Chem. Phys. Lett. 683 (2017) 586–590

Modeling the Spectra of M-COO- Expand in transition dipole moment between levels and of normal mode Q in Taylor series to 1st order: = Fixed charge model – atomic charges qj are constant, only molecular geometry varies

Modeling the Spectra of M-COO- Expand in transition dipole moment between levels and of normal mode Q in Taylor series to 1st order: = 1st term: fixed charge model – atomic charges qj are constant, only molecular geometry varies 2nd term: vibrationally mediated changes in charge distribution

Modeling the Spectra of M-COO- Vibrationally mediated changes in charge distribution – charge oscillations Enhances transition dipole Considerable charge flow: q ≤ 0.2 e Symmetric stretching mode: binding partner acts as “charge reservoir” CO2-: no binding partner, only small intramolecular charge oscillations Antisymm. CO stretching mode: independent of binding partner q(COO-) [e] H Ag Bi

Modeling the Spectra of M-COO- Vibrationally mediated changes in charge distribution – charge oscillations Previously found in other molecular systems: CH2X radicals (X = F, Cl; “charge sloshing”) E.S. Whitney, F. Dong, D.J. Nesbitt, J. Chem. Phys. 125 (2006) 054304. E.S. Whitney, T. Haeber, M.D. Schuder, A.C. Blair, D.J. Nesbitt, J. Chem. Phys. 125 (2006) 054303. [Cu·H2O]+ complexes P.D. Carnegie, A.B. McCoy, M.A. Duncan, J. Phys. Chem. A 113 (2009) 4849. H3O+·X3 complexes (X = Ar, N2, CH4, H2O) A.B. McCoy, T.L. Guasco, C.M. Leavitt, S.G. Olesen, M.A. Johnson, Phys. Chem. Chem. Phys. 14 (2012) 7205. X-·H2O (X = OH, O, F, Cl, and Br) complexes J.R. Roscioli, E.G. Diken, M.A. Johnson, S. Horvath, A.B. McCoy, J. Phys. Chem. A 110 (2006) 4943.

Modeling the Spectra of M-COO- Expand in transition dipole moment between levels and of normal mode Q in Taylor series to 1st order: = 1st term: fixed charge model – atomic charges qj are constant, only molecular geometry varies 2nd term: vibrationally mediated changes in charge distribution increases with size of binding partner M and volume of M-C bond

Modeling the Spectra of M-COO- Expand in transition dipole moment between levels and of normal mode Q in Taylor series to 1st order: = 1st term: fixed charge model – atomic charges qj are constant, only molecular geometry varies 2nd term: vibrationally mediated changes in charge distribution

Summary Intensity ratios between symmetric and antisymmetric CO stretching modes in M-COO- strongly depend on M Fixed charge model is insufficient to describe this behavior. Charge oscillations enhance transition dipole moments, effect varies strongly with M for symmetric CO stretch M acts as a charge reservoir that can dynamically accept charge during C-O bond contraction

Dramatis Personae Michael Thompson NSF AMO PFC

Thank you for your attention