Protein Structure BL4010 09.26.06.

Slides:



Advertisements
Similar presentations
Protein Structure Basics Presented by Alison Fraser, Christine Lee, Pradhuman Jhala, Corban Rivera.
Advertisements

Protein Structure C483 Spring 2013.
A brief refresher on protein structure Topic 3. Perhaps the most important structural bioinformatics result ever published… Chothia, C. & Lesk, A. M.
Protein Chemistry Basics
Protein Structure – Part-2 Pauling Rules The bond lengths and bond angles should be distorted as little as possible. No two atoms should approach one another.
The amino acids in their natural habitat. Topics: Hydrogen bonds Secondary Structure Alpha helix Beta strands & beta sheets Turns Loop Tertiary & Quarternary.
Protein Secondary Structure II Lecture 2/24/2003.
Protein 3-Dimensional Structure and Function
1 September, 2004 Chapter 5 Macromolecular Structure.
The Structure and Functions of Proteins BIO271/CS399 – Bioinformatics.
Proteins Dr Una Fairbrother. Dipeptides u Two amino acids are combined as in the diagram, to form a dipeptide. u Water is the other product.
Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Proteins: Their Structure and Biological Functions.
Protein Basics Protein function Protein structure –Primary Amino acids Linkage Protein conformation framework –Dihedral angles –Ramachandran plots Sequence.
Basics of protein structure and stability III: Anatomy of protein structure Biochem 565, Fall /29/08 Cordes.
A PEPTIDE BOND PEPTIDE BOND Polypeptides are polymers of amino acid residues linked by peptide group Peptide group is planar in nature which limits.
Proteins: Levels of Protein Structure Conformation of Peptide Group
Proteins Dr. Sumbul Fatma Clinical Chemistry Unit
Housekeeping Your performance on the exam has caused me to re-evaluate how homework will be handled I will now be picking up every problem assigned on.
Types of Proteins Proteomics - study of large sets of proteins, such as the entire complement of proteins produced by a cell E. coli has about 4000 different.
LSM2104/CZ2251 Essential Bioinformatics and Biocomputing Essential Bioinformatics and Biocomputing Protein Structure and Visualization Chen Yu Zong
Protein Secondary Structure Lecture 2/19/2003. Three Dimensional Protein Structures Confirmation: Spatial arrangement of atoms that depend on bonds and.
Lecture 10: Protein structure
Proteins: Secondary Structure Alpha Helix
Proteins. Proteins? What is its How does it How is its How does it How is it Where is it What are its.
Proteins: Amino Acid Chains DNA Polymerase from E. coli Standard amino acid backbone: Carboxylic acid group, amino group, the alpha hydrogen and an R group.
Protein “folding” occurs due to the intrinsic chemical/physical properties of the 1° structure “Unstructured” “Disordered” “Denatured” “Unfolded” “Structured”
BD2ZdVSe2vQ&feature=related.
Protein Folding & Biospectroscopy F14PFB David Robinson Mark Searle Jon McMaster
PROTEINS C, H, O, N, (S) Polymers made from chains of amino acids 20 amino acids used Linked by a peptide bond.
CS790 – BioinformaticsProtein Structure and Function1 Review of fundamental concepts  Know how electron orbitals and subshells are filled Know why atoms.
Mrs. Einstein Research in Molecular Biology. Importance of proteins for cell function: Proteins are the end product of the central dogma YOU are your.
Protein Structure 1 Primary and Secondary Structure.
Protein 3-Dimensional Structure and Function. Terminology Conformation – spatial arrangement of atoms in a protein Native conformation – conformation.
The α-helix forms within a continuous strech of the polypeptide chain 5.4 Å rise, 3.6 aa/turn  1.5 Å/aa N-term C-term prototypical  = -57  ψ = -47 
Protein Structure (Foundation Block) What are proteins? Four levels of structure (primary, secondary, tertiary, quaternary) Protein folding and stability.
Protein structure and function Part - I
Chapter 3. Protein structure and function. Proteins are the most versatile macromolecules in living systems. serve crucial functions in essentially all.
Proteins Dr. Sumbul Fatma Clinical Chemistry Unit Department of Pathology Tel
Protein structural element Yun-Ru (Ruby) Chen 陳韻如 Ph.D. The Genomics Research Center (office at 7th floor) ext 355.
3-D Structure of Proteins
Protein Structure and Bioinformatics. Chapter 2 What is protein structure? What are proteins made of? What forces determines protein structure? What is.
Proteins: 3D-Structure Chapter 6 (9 / 17/ 2009)
Protein backbone Biochemical view:
Levels of Protein Structure. Why is the structure of proteins (and the other organic nutrients) important to learn?
Levels of Protein Structure. Why is the structure of proteins (and the other organic nutrients) important to learn?
Tymoczko • Berg • Stryer © 2015 W. H. Freeman and Company
Lecture 47: Structure II -- Proteins. Today’s Outline The monomers: amino acids – Side chain characteristics – Acid-base equilibria and pK a Peptide backbone.
Peptides to Proteins. What are PROTEINS? Proteins are large, complex molecules that serve diverse functional and structural roles within cells.
Structural organization of proteins
Mir Ishruna Muniyat. Primary structure (Amino acid sequence) ↓ Secondary structure ( α -helix, β -sheet ) ↓ Tertiary structure ( Three-dimensional.
Protein Proteins are biochemical compounds consisting of one or more polypeptides typically folded into a globular or fibrous form in a biologically functional.
Biochemistry Free For All
Protein structure is conceptually divided into four levels of organization Primary structure is the amino acid sequence of a protein's polypeptide chain.
Protein Structure Prediction Dr. G.P.S. Raghava Protein Sequence + Structure.
The heroic times of crystallography
Protein Structure September 7,
The Peptide Bond Amino acids are joined together in a condensation reaction that forms an amide known as a peptide bond.
Hierarchical Structure of Proteins
Lecture 5 Protein Structure.
Conformationally changed Stability
The Peptide Bond Amino acids are joined together in a condensation reaction that forms an amide known as a peptide bond.
Biochem Block Handout #6: Protein Structure
-Primary and Secondary Structure-
Protein 3-Dimensional Structure and Function
Conformationally changed Stability
Levels of Protein Structure
Protein Structure INTRODUCTION OF PROTIEN. Organic compounds containing C,H,O,N,P,S Comprise 50% of dry weight of cell. Made up of Amino acids. Protein.
Fig 3.13 Reproduced from: Biochemistry by T.A. Brown, ISBN: © Scion Publishing Ltd, 2017.
The Three-Dimensional Structure of Proteins
Presentation transcript:

Protein Structure BL4010 09.26.06

The relationship of structure and function Desirable conformations will be at energy minima 1° structure: amino acid sequence 2° structure: structures localized to certain short stretches of the polypeptide chain - form wherever possible - stabilized by large numbers of H-bonds 3° structure: overall folding of the entire polypeptide 4° structure: overall structure for multimeric proteins (several polypeptides)

The peptide bond

The Peptide Bond 0.133 nm (1.33 Å) - shorter than a typical single bond but longer than a double bond 40% double bond character the six atoms of the peptide bond group are planar (C,C=O,N-H, C) Rotation in the polymer occurs at C Inherent dipole (N partially positive; O partially negative)

Limited Rotation about Peptide Bond Two degrees of freedom per residue for the peptide chain Backbone and side groups limited free rotation

Further conformational restriction

Backbone Torsion Angles ω angle tends to be planar (0º - cis, or 180 º - trans) due to delocalization of carbonyl pi electrons and nitrogen lone pair φ and ψ are flexible, therefore rotation occurs here However, φ and ψ of a given amino acid residue are limited due to steric hindrance Only 10% of the {φ, ψ} combinations are generally observed for proteins First noticed by G.N. Ramachandran

Computed Ramachandran Plot Plot of φ vs. ψ The computed angles which are sterically allowed fall on certain regions of plot White = sterically disallowed conformations (atoms come closer than sum of van der Waals radii) Blue = sterically allowed conformations

Experimental Ramachandran Plot X-ray crystallography

Secondary Structure Repeating values of φ and ψ along the chain result in regular structure The ability to do this is dependent on steric considerations...i.e. secondary structure is dependent to some degree on primary structure (sequence)

Secondary Structure - alpha helix For example, repeating values of φ ~ -57° and ψ ~ -47° give a right-handed helical fold (the alpha-helix) e.g. cytochrome c, an alpha helical protein

Secondary Structure - beta sheet Similarly, repetitive values in the region of φ = -110 to –140 and ψ = +110 to +135 give beta sheets. Plastocyanin is composed mostly of beta

Note more allowed regions due to less steric hindrance - Turns

Note less allowed regions due to structure rigidity

Name φ ψ Structure ------------------- ------- ------- --------------------------------- alpha-L 57 47 left-handed alpha helix 3-10 Helix -49 -26 right-handed. π helix -57 -80 right-handed. Type II helices -79 150 left-handed helices formed by polyglycine and polyproline. Collagen -51 153 right-handed coil formed of three left handed helicies.  

And Secondary Structure Hydrogen Bonding And Secondary Structure alpha-helix beta-sheet

Alpha helix

Alpha helix Residues per turn: 3.6 Rise per residue: 1.5 Angstroms Rise per turn (pitch): 3.6 x 1.5A = 5.4 Angstroms The backbone loop that is closed by any H-bond in an alpha helix contains 13 atoms phi = -60 degrees, psi = -45 degrees The non-integral number of residues per turn was a surprise to crystallographers

Beta sheet

Beta sheet Postulated by Pauling and Corey (1951) Strands may be parallel or antiparallel Rise per residue: 3.47 Angstroms for antiparallel strands 3.25 Angstroms for parallel strands Each strand of a beta sheet may be pictured as a helix with two residues per turn

Beta turn allows the peptide chain to reverse direction carbonyl C of one residue is H-bonded to the amide proton of a residue three residues away proline and glycine are prevalent in beta turns

Turns & Random Coils Loops & Turns ( turns) 1/3 globular protein Mostly at surface of protein allows the peptide chain to reverse direction C=O H-bonded to the NH three residues away proline and glycine Random coil can't assign 2° structure, adopts multiple conformations depending on conditions but not random - energy minima flexible linkers, hinges

Structure Stabilizing Interactions Noncovalent Van der Waals forces (transient, weak electrical attraction of one atom for another) Hydrophobic (clustering of nonpolar groups) Hydrogen bonding Covalent Disulfide bonds

Disulfide Bonds Side chain of cysteine contains highly reactive thiol group Two thiol groups form a disulfide bond Contribute to the stability of the folded state by linking distant parts of the polypeptide chain 

Other factors that affect 2° structure Prosthetic groups Coenzymes Cations Intramolecular/Intermolecular bonds disulfides dityrosine aldol cross-linking

Tertiary Structure The backbone links between elements of secondary structure are usually short and direct Proteins fold to make the most stable structures (make H-bonds and minimize solvent contact

Protein classification Structural motif Biochemical function

Protein evolution Divergent evolution Similar sequence Different function Convergent evolution Different sequence Similar function