The Cosmic Star Formation and Metallicity History Lisa Kewley Hubble Fellow U. Hawaii with C. Kobulnicky (U.Wyoming), S. Ellison (U. Vic), M. Geller (CfA), R. Jansen (ASU)
Summary Motivation Star Formation Rates Cosmic Star Formation History Metallicity diagnostics Cosmic Metallicity History Conclusions & Future Directions
Motivation Galaxy Evolution Image credit: R. Thompson, NASA Image credit: NASA
Star Formation History Madau et al. (1996) Lilly et al. (1996) Madau - Hubble Deep Field Lilly - Canada France Redshift Survey
Optical Spectrum SFR measured in infrared, optical, radio, UV, X-rays [OII]
Optical Spectrum disagreement SFR measured in infrared, optical, radio, UV, X-rays disagreement
Star Formation Rate Discrepancies Teplitz et al. (2003) filled = [OII] unfilled = Ha
Star Formation Rate Discrepancies Teplitz et al. (2003) Norman et al. (2003) UV [OII] Ha IR radio comb * + x -0.5 -1.5 -1 -2 -2.5 0.2 0.4 0.6 0.8 SFR Density log (MO / yr / Mpc3) . Redshift
Towards SFR agreement Nearby Field Galaxy Survey (NFGS) Jansen et al. (2000,2001) 198 galaxies objectively selected from the CfA galaxy survey (Davis & Peebles 1983, Huchra et al. 1983) full range in Hubble type full range of absolute magnitudes in CfA survey integrated optical spectra
Measuring Star Formation Rates Infrared SFRIR = 4.5 x 10-44 x LIR e.g., Kennicutt (1998) NASA/JPL-Caltech/S. Willner (CfA) Assumptions: young stars dominate emission large optical depth continuous burst model Salpeter IMF
Measuring Star Formation Rates Optical : Ha SFRHa = 7.9 x 10-42 x LHa e.g., Kennicutt (1998) Image credit: Fabio Bresolin (U. Hawaii) Assumptions: no dust total re-emission of ionizing photons Salpeter IMF
Ha vs. Infrared SFRs SFR(IR) SFR (Ha) Kewley et al. (2002, AJ, 124, 3135) SFR(IR) SFR (Ha)
Star Formation Rate Discrepancies Teplitz et al. (2003) filled = [OII] unfilled = Ha
[OII] SFR SFR([OII]) = (1.4 +/- 0.4) x 10-41 x L([OII]) (Kennicutt 1998, 1992) Key Assumptions: Observed [OII]/Ha = 0.6 Observed [NII]/Ha = 0.5 (blended) No effect from ionization state of gas Independent of metallicity Salpeter IMF
[OII] & Ha SFRs rms = 0.11 SFR [OII] SFR (Ha) Kewley, Geller, & Jansen (2004, AJ, 127, 2002) 0.01 100 1.0 SFR (Ha) 0.4 ratio -0.4 SFR [OII]
[OII] SFR SFR([OII]) = (1.4 +/- 0.4) x 10-41 x L([OII]) (Kennicutt 1998, 1992) Key Assumptions: Observed [OII]/Ha = 0.6 Observed [NII]/Ha = 0.5 (blended) No effect from ionization state of gas Independent of metallicity Salpeter IMF
Ionizing Radiation Field Starburst99 (Leitherer et al. 1999, Crowther et al. 2006) Instantaneous & Continuous Burst Models Extended Wolf-Rayet Atmospheres
Photoionization Models Kewley et al. (2001) Mappings III - radiative transfer including dust Sutherland & Dopita 1993, Groves et al. 2003, 2006 Metallicity: 0.05, 0.2, 0.4, 1.0, 2.0 x solar Ionization Parameter: 1e7, 2e7, 4e7, 8e7, 1.5e8, 3e8 cm/s alternative: CLOUDY (Ferland et al. 1998) Self-consistent photoionization models to calculate radiative transfer through gas in the presence of dust.
( ) Definitions Metallicity = Gas-phase Oxygen Abundance = log +12 Solar ~ 8.7 (Allende Prieto et al. 2001) log +12 ( ) O H Ionization parameter: q = SH nH (cm/s) H ionizing photons/Area/s hydrogen density
New [OII] calibration: Theoretical
New [OII] calibration: Theoretical kHa L([OII]) SFR([OII],Z) = a+ bZ - cZ2 + dZ3 where Z = metallicity = log(O/H)+12 Includes Metallicity & Ionization Parameter Correction Kewley, Geller, & Jansen (2004, AJ, 127, 2002)
New [OII] calibration: Theoretical rms=0.04-0.05 (c.f. 0.11)
Metallicity at High-z Lilly, Carollo & Stockton 2003: M91 0.5 < z < 1.0 : log(O/H)+12~8.9 (c.f. 8.6 locally) Hippelein et al. (2003): 0.25 < z < 1.2 : [OII]/Ha = 0.9 (intrinsic) our [OII]/Ha - metallicity calibration log(O/H)+12~8.77 Teplitz et al. (2003): 0.4 < z < 1.4 : [OII]/Ha = 0.45 (observed) = 0.83 (intrinsic) log(O/H)+12~8.81 Luminosity Selection Effect
High-z Galaxies 0.8 < z < 1.6 Hicks et al. (2002) 0.5 < z < 1.1 Tresse et al. (2002)
Star Formation History K98 [OII] SFR inconsistent reddening correction filled = [OII] unfilled = Ha data from Teplitz et al. (2003) Our [OII] SFR log(O/H)+12~8.6, consistent reddening correction also: Rosa-Gonzalez, Terlevich, & Terlevich (2002) Our [OII] SFR log(O/H)+12~8.8 consistent reddening and metallicity correction Kewley, Geller, & Jansen (2004)
Metallicity History Metallicity history of star-forming galaxies still largely theoretical. Nagamine et al. (2001)
Metallicity History Galactic Winds An idea of the extent and orientation of the galactic wind of M82 is seen in this image, which traces the ionised hydrogen (red) contained within it. The wind extends ~10,000 light years from the centre of the galaxy where the starbust is taking place. The burst of star formation powering the wind was probably caused by an interaction with the neighbouring galaxy M81 (not shown). Image credit: FOCAS, Subaru 8.2-m Telescope, NAOJ.
Theoretical Metallicity History Predicted for: Star-forming gas Stars Neutral gas Figure from Dave & Oppenheimer? Once done, copy to end of presentation for questions about stellar metallicities and DLAs Add a slide about stellar metallicities (Savaglio work) and DLA metallicity evolution (Ellison, Prochaska, Fall) - also include a plot from Wild, Hewitt, Pettini work on contribution of DLAs to SF history. e.g., Dave & Oppenheimer (2007)
Theoretical Metallicity History Predicted for: Star-forming gas Stars Neutral gas Figure from Dave & Oppenheimer? Once done, copy to end of presentation for questions about stellar metallicities and DLAs Add a slide about stellar metallicities (Savaglio work) and DLA metallicity evolution (Ellison, Prochaska, Fall) - also include a plot from Wild, Hewitt, Pettini work on contribution of DLAs to SF history. e.g., Dave & Oppenheimer (2007)
Metallicity Diagnostics “R23” Kewley & Dopita (2002, ApJS, 142, 35) Also: Pagel (1979), McCall et al. (1985), ..., Skillman et al. (1989), McGaugh (1991),..., Zaritsky et al. (1994), Charlot (2001), ...
Metallicity Diagnostics - [NII]/Ha Kewley & Dopita (2002) also: Denicolo, Terlevich & Terlevich (2002) Pettini & Pagel (2004) R23 and [NII]/Ha re-parameterized Kobulnicky & Kewley (2004)
Ionization Parameter - O32 q = SH nH (cm/s) H ionizing photons/Area/s hydrogen density Kewley & Dopita (2002)
Local Samples: NFGS + SDSS Kewley, Jansen & Geller (2005) 45,086 SDSS star-forming galaxies g-band covering fraction > 20%
GOODS+ : 0.3 < z< 1 ~450 galaxies from: GOODS + Lilly et al. (2003) Kobulnicky et al. (2003) Maier et al. (2004,05,06) Liang et al. (2004) Lamareille et al. (2005) Savaglio et al. (2005)
GOODS+ : 0.3 < z< 1 ~450 galaxies from: GOODS + Lilly et al. (2003) Kobulnicky et al. (2003) Maier et al. (2004,05,06) Liang et al. (2004) Lamareille et al. (2005) Savaglio et al. (2005)
High-z sample 5 galaxies: 1<z<1.5 (Shapley et al. 2005) [OII], [OIII], Hb, [NII] 7 galaxies: 2 < z < 2.5 (Shapley et al. 2004) [NII], Ha 2 galaxies: z=2.3, 2.9 (Kobulnicky & Koo 2000) [OII], [OIII], Hb 5 galaxies: 2.7<z<3.4 (Pettini et al. 2001) Check what the ensemble galaxy paper is by Shapley - is it the 2004 paper?
Metallicity Diagnostic Discrepancies Kewley & Ellison (2007) SDSS mass-metallicity relation Tremonti et al. (2004)
Metallicity Diagnostic Discrepancies Kewley & Ellison (2007)
Metallicity Diagnostic Discrepancies Before: After: Kewley & Ellison (2007)
Metallicity History 0<z<3 NFGS Lyman Break Galaxies SDSS 0.15 dex/z GOODS+ assumes upper branch Kewley & Kobulnicky (2006, in prep)
Metallicity History 0<z<3 Models: Dave & Oppenheimer (2006) Kewley & Kobulnicky (2006, in prep)
Metallicity History Bias: 0.4 < z < 1 Assumptions: R23 upper branch AV = 1 Kewley & Kobulnicky (2006, in prep)
Solution: 0.4 < z < 1 NIR multi-object spectroscopy Subaru - MOIRCS observations ongoing Soon to come: VLT - NIRMOS (2008/2009) Gemini-S - Flamingos-II (2008) Magellan - MMIRS (2008)
Metallicity History Bias: z > 1 Color selection BzK Lyman Break
High-z Metallicity Bias? Try alternative selection: Lensed galaxies GRB Hosts [OII], [OIII] emitters Luminous red star-forming galaxies
Alternative selection: Lensed Galaxies Lemoine-Busserolle et al. (2003) z=1.9 log(O/H)+12 ~ 7.6 +/- 0.2 log(O/H)+12 ~ 9.0 +/- 0.1
Metallicity History 0<z<3 Models: Dave & Oppenheimer (2006) Kewley & Kobulnicky (2006, in prep)
Alternative selection: GRB Hosts Local GRB hosts may favor low metallicity galaxies GRB Hosts Kewley et al. (2006)
SFR Conclusions Agreement between SFRIR and SFRHa Discrepancy between SFR[OII] and SFRHa: reddening and metallicity New theoretical SFR[OII] calibration removes this discrepancy ... but what if metallicity changes with redshift?
Metallicity Conclusions Metallicity History for star-forming galaxies Metallicity evolution observed First comparison with appropriate metallicities from cosmological hydrodynamic simulations Steeper Metallicity evolution predicted More work needed for robust metallicity history...
Future Directions GOODS Near-IR Spectra Near future: Subaru - MOIRCS - observations ongoing 2008-09: VLT, Magellan, Gemini-S COS: UV spectra => Si, N, C, abundances Modelling of emission-line + other selection effects Investigate alternative selection methods Near future:
Future Directions NIRSpec: faint More distant future: JWST galaxies z > 1 NIRSpec + MIRI: metallicity for z > 3 More distant future: JWST Microshutter Assembly - thousands of microshutters of NIRspec will allow many galaxies to be obtained spectroscopically at once. For example, in the same J-band spectrum, NIRspec will be able to simultaneously observe [NII]/Ha for galaxies at 0.4<z<1, [OIII]/Hb for galaxies at z=1.3 - 1.5. In H-band, [NII]/Ha could be obtained for those 1.3-1.5 galaxies, as well as [OII] for galaxies at z~3. In K, [OIII], Hb would be obtained for the z~3 galaxies. MIRI would be required for galaxies at redshifts > 3.
Future Directions NIRSpec: faint galaxies More distant future: JWST z > 1 NIRSpec + MIRI: metallicity for z > 3 More distant future: JWST NIRSpec NIRSpec + MIRI
Future Directions NIRSpec, MIRI More distant future: JWST metallicity for z > 1 FGS-TFI metallicity gradient evolution More distant future: JWST JWST simulation: Windhorst, Conselice & Petro
Future Directions NIRSpec, MIRI metallicity for z > 1 FGS-TFI metallicity gradient evolution More distant future: JWST Link SF & metallicity history through chemical evolution & galactic wind models JWST simulation: Windhorst, Conselice & Petro
Starburst99-Mappings On-Line L. Kewley & C. Leitherer Available Now! Starburst99-Mappings On-Line L. Kewley & C. Leitherer Starburst99-Mappings Interface: http://www.stsci.edu/science/starburst99/ Mappings Interface: http://www.ifa.hawaii.edu/~kewley/Mappings Pre-run model grids Interactive web form to run models
AGN Removal Kewley et al. 2001, 2006
AGN Removal Kewley, Heckman, & Kauffmann (in prep)
Aperture Effects Large scatter => SFR errors unless integrated spectra are used Kewley, Geller, & Jansen 2004 PASP, submitted covering fraction
Alternative selection: Lensed Galaxies Lemoine-Busserolle et al. (2003) z=1.9 log(O/H)+12 ~ 7.6 +/- 0.2 log(O/H)+12 ~ 9.0 +/- 0.1
Alternative selection: GRB Hosts Kewley, Brown & Geller (2006) Stanek et al. (2006)
IR SFRs SFR(IR) = 4.5 x 10-44 L(IR) 7.9 x 10-44 L(FIR) ~ (Kennicutt 1998, Calzetti et al. 2000) Assumptions: young stars dominate emission large optical depth continuous burst model Saltpeter IMF
[OII]/Ha & Reddening
[OII] and metallicity
Measuring Star Formation Rates Infrared SFRIR = kIR x LIR e.g., Kennicutt (1998) Figure credit: Dale et al. (2001) See also Sanders & Mirabel (1996)
Metallicity at Higher redshift Lilly, Carollo & Stockton (2003) Luminosity Selection Effect 0.5 < z < 1.0 CFRS log(O/H)+12~8.9 local NFGS: log(O/H)+12~8.6
High-z Galaxies 0.8 < z < 1.6 Hicks et al. (2002) 0.5 < z < 1.1 Tresse et al. (2002)
[OII] and luminosity Jansen et al. (2001)
Why are SFRs important? Galaxy evolution models Age, metallicity, SED Star formation history of galaxies Measured in infrared, optical, radio, UV, X-rays