The Cosmic Star Formation

Slides:



Advertisements
Similar presentations
The BPT diagram and mass-metallicity relation at z~2.3: Insights from KBSS-MOSFIRE Steidel et al. (2014) - Strong nebular line ratios in the spectra of.
Advertisements

A detailed 2D spectroscopic study of the Central Region of NGC 5253 Ana Monreal Ibero (1) José Vílchez (1), Jeremy Walsh (2), Casiana Muñoz-Tuñón (3) (1)
Probing the End of Reionization with High-redshift Quasars Xiaohui Fan University of Arizona Mar 18, 2005, Shanghai Collaborators: Becker, Gunn, Lupton,
JWST Science 4-chart version follows. End of the dark ages: first light and reionization What are the first galaxies? When did reionization occur? –Once.
First Spectroscopic Evidence for High Ionization State and Low Oxygen Abundance in Lyα Emitters ( arXiv: , ApJ submitted ) subaru on 16/Jan/2013.
9/19/2014 Claus Leitherer: Lyman Continuum Leakage 1 Lyman Continuum Leakage in the Local Universe Claus Sanch Tim Janice Sally Roderik Leitherer Borthakur.
Collaborators: E. Egami, X. Fan, S. Cohen, R. Dave, K. Finlator, N. Kashikawa, M. Mechtley, K. Shimasaku, and R. Windhorst.
Deciphering the Ancient Universe with Gamma-Ray Bursts Nobuyuki Kawai (Tokyo Tech)
The Luminosity-Metallicity Relation of Distant Luminous Infrared Galaxies Yanchun Liang (1,2), Francois Hammer (2), Hector Flores (2), David Elbaz (3),
RESULTS AND ANALYSIS Mass determination Kauffmann et al. determined masses using SDSS spectra (Hdelta & D4000) Comparison with our determination: Relative.
September 6— Starburst 2004 at the Institute of Astronomy, Cambridge Constraints on Lyman continuum flux escaping from galaxies at z~3 using VLT.
Star formation at high redshift (2 < z < 7) Methods for deriving star formation rates UV continuum = ionizing photons (dust obscuration?) Ly  = ionizing.
The Dwarf Starburst Galaxy NGC 1705 : New H II Region Element Abundances & Reddening Variations Near the Center NGC 1705 is a nearby dwarf starburst galaxy.
The Properties of LBGs at z>5 Matt Lehnert (MPE) Malcolm Bremer (Bristol) Aprajita Verma (MPE) Natascha Förster Schreiber (MPE) and Laura Douglas (Bristol)
Star2map Shannon Guiles Cornell University July 16, 2004.
Lisa Kewley (CfA) Margaret Geller (CfA) Rolf Jansen (ASU) Mike Dopita (RSAA)
Evolution in Lyman-alpha Emitters and Lyman-break Galaxies Masao Mori Theoretical Astrophysics division, Center for Computational Sciences, University.
New Insight Into the Dust Content of Galaxies Based on the Analysis of the Optical Attenuation Curve.
130 cMpc ~ 1 o z~ = 7.3 Lidz et al ‘Inverse’ views of evolution of large scale structure during reionization Neutral intergalactic medium via HI.
Luminosity and Mass functions in spectroscopically-selected groups at z~0.5 George Hau, Durham University Dave Wilman (MPE) Mike Balogh (Waterloo) Richard.
Evolutionary Population Synthesis models Divakara Mayya INAOEhttp:// Advanced Lectures on Galaxies (2008 INAOE): Chapter 4.
The Evolution of Quasars and Massive Black Holes “Quasar Hosts and the Black Hole-Spheroid Connection”: Dunlop 2004 “The Evolution of Quasars”: Osmer 2004.
Conference “Summary” Alice Shapley (Princeton). Overview Multitude of new observational, multi-wavelength results on massive galaxies from z~0 to z>5:
10/14/08 Claus Leitherer: UV Spectra of Galaxies 1 Massive Stars in the UV Spectra of Galaxies Claus Leitherer (STScI)
Modeling the dependence of galaxy clustering on stellar mass and SEDs Lan Wang Collaborators: Guinevere Kauffmann (MPA) Cheng Li (MPA/SHAO, USTC) Gabriella.
FRENEL Meeting, Nice, September 2009 FRESNEL Imager: Extragalactic Science in the UV-Optical domains Roser Pelló Laboratoire d’Astrophysique de Toulouse-Tarbes.
Finding z  6.5 galaxies with HST’s WFC3 and their implication on reionization Mark Richardson.
Delphine Marcillac Moriond 2005 When UV meets IR... 1 IR properties of distant IR galaxies Delphine Marcillac (PhD student) Supervisor : D. Elbaz In collaboration.
The star formation history of the local universe A/Prof. Andrew Hopkins (AAO) Prof. Joss Bland-Hawthorn (USyd.) & the GAMA Collaboration Madusha L.P. Gunawardhana.
IZI: INFERRING METALLICITIES AND IONIZATION PARAMETERS WITH BAYESIAN STATISTICS Guillermo A. Blanc Universidad de Chile.
A Steep Faint-End Slope of the UV LF at z~2-3: Implications for the Missing Stellar Problem C. Steidel ( Caltech ) Naveen Reddy (Hubble Fellow, NOAO) Galaxies.
Calibración de trazadores de formación estelar mediante modelos de síntesis Héctor Otí-Floranes, J. M. Mas-Hesse & M. Cerviño SEA, Santander, 11 de julio.
Recontres de Moriond XXV La Thuile, March 2005 Recontres de Moriond XXV La Thuile, March 2005 Theoretical SEDs in Starbursts: SFRs in both the UV and IR.
Formation and evolution of early-type galaxies Pieter van Dokkum (Yale)
X-ray selected Type-2 QSOs and their host galaxies Vincenzo Mainieri with A. Bongiorno, A. Merloni, M. Bolzonella, M. Brusa, M. Carollo, G. Hasinger, K.
Evidence for a Population of Massive Evolved Galaxies at z > 6.5 Bahram Mobasher M.Dickinson NOAO H. Ferguson STScI M. Giavalisco, M. Stiavelli STScI Alvio.
Constraints on a Universal IMF1 from the Entire Stellar Population2,3
Big Bang f(HI) ~ 0 f(HI) ~ 1 f(HI) ~ History of Baryons (mostly hydrogen) Redshift Recombination Reionization z = 1000 (0.4Myr) z = 0 (13.6Gyr) z.
Radiative Transfer Simulations The Proximity Effect of LBGs: Antonella Maselli, OAArcetri, Firenze, Italy Collaborators: A.Ferrara, M. Bruscoli, S. Marri.
KASI Galaxy Evolution Journal Club A Massive Protocluster of Galaxies at a Redshift of z ~ P. L. Capak et al. 2011, Nature, in press (arXive: )
[OII] Lisa Kewley Australian National University.
Lisa Kewley - Lisa Kewley (IfA, U.Hawaii) Collaborators: C. Kobulnicky (U.Wyoming), M. Geller (SAO), B. Barton (UC Irvine), R. Jansen.
Galaxy Evolution and WFMOS
The Host Galaxies of Dust-Obscured Gamma-Ray Bursts
GRB A: A short GRB associated with recent star-formation?
The Complete Calibration of the Color-Redshift Relation (C3R2) Survey
Dust-Obscured Gamma-Ray Bursts and the Cosmic Star-Formation Rate
GRB host galaxies: A legacy approach Daniele Malesani Collaborators:
A Survey of Starburst Galaxies An effort to help understand the starburst phenomenon and its importance to galaxy evolution Megan Sosey & Duilia deMello.
Are WE CORRECTLY Measuring the Star formation in galaxies?
Growth of SMBH studied through X-ray surveys
HII regions at high redshift
THE FIRST GALAXY FORMATION MODEL WITH THE TP-AGB:
Metallicity: A Smoking Gun for Gas Flows in Mergers
The WHIQII Survey (WIYN High Image Quality Indiana-Irvine Survey)
“Dark” GRB in a Dusty Massive Galaxy at z ~ 2
in a Large-Scale Structure at z=3.1
Possibility of UV observation in Antarctica
Extra-galactic blank field surveys with CCAT
The Starburst-AGN Connection Among COSMOS (U)LIRGs
The SAURON Survey - The stellar populations of early-type galaxies
Observing galaxies at z = 8.8
The Stellar Population of Metal−Poor Galaxies at z~1
The dust attenuation in the galaxy merger Mrk848
Specific Star Formation Rates to z=1.5
QSO2 and their host galaxies
Black Holes in the Deepest Extragalactic X-ray Surveys
Galactic Astronomy 銀河物理学特論 I Lecture 3-4: Chemical evolution of galaxies Seminar: Erb et al. 2006, ApJ, 644, 813 Lecture: 2012/01/23.
Authod: Ryan L. Sanders et al.(2018)
Metallicity Evolution of Active Galactic Nuclei
Presentation transcript:

The Cosmic Star Formation and Metallicity History Lisa Kewley Hubble Fellow U. Hawaii with C. Kobulnicky (U.Wyoming), S. Ellison (U. Vic), M. Geller (CfA), R. Jansen (ASU)

Summary Motivation Star Formation Rates Cosmic Star Formation History Metallicity diagnostics Cosmic Metallicity History Conclusions & Future Directions

Motivation Galaxy Evolution Image credit: R. Thompson, NASA Image credit: NASA

Star Formation History Madau et al. (1996) Lilly et al. (1996) Madau - Hubble Deep Field Lilly - Canada France Redshift Survey

Optical Spectrum SFR measured in infrared, optical, radio, UV, X-rays [OII]

Optical Spectrum disagreement SFR measured in infrared, optical, radio, UV, X-rays disagreement

Star Formation Rate Discrepancies Teplitz et al. (2003) filled = [OII] unfilled = Ha

Star Formation Rate Discrepancies Teplitz et al. (2003) Norman et al. (2003) UV [OII] Ha IR radio comb * + x -0.5 -1.5 -1 -2 -2.5 0.2 0.4 0.6 0.8 SFR Density log (MO / yr / Mpc3) . Redshift

Towards SFR agreement Nearby Field Galaxy Survey (NFGS) Jansen et al. (2000,2001) 198 galaxies objectively selected from the CfA galaxy survey (Davis & Peebles 1983, Huchra et al. 1983) full range in Hubble type full range of absolute magnitudes in CfA survey integrated optical spectra

Measuring Star Formation Rates Infrared SFRIR = 4.5 x 10-44 x LIR e.g., Kennicutt (1998) NASA/JPL-Caltech/S. Willner (CfA) Assumptions: young stars dominate emission large optical depth continuous burst model Salpeter IMF

Measuring Star Formation Rates Optical : Ha SFRHa = 7.9 x 10-42 x LHa e.g., Kennicutt (1998) Image credit: Fabio Bresolin (U. Hawaii) Assumptions: no dust total re-emission of ionizing photons Salpeter IMF

Ha vs. Infrared SFRs SFR(IR) SFR (Ha) Kewley et al. (2002, AJ, 124, 3135) SFR(IR) SFR (Ha)

Star Formation Rate Discrepancies Teplitz et al. (2003) filled = [OII] unfilled = Ha

[OII] SFR SFR([OII]) = (1.4 +/- 0.4) x 10-41 x L([OII]) (Kennicutt 1998, 1992) Key Assumptions: Observed [OII]/Ha = 0.6 Observed [NII]/Ha = 0.5 (blended) No effect from ionization state of gas Independent of metallicity Salpeter IMF

[OII] & Ha SFRs rms = 0.11 SFR [OII] SFR (Ha) Kewley, Geller, & Jansen (2004, AJ, 127, 2002) 0.01 100 1.0 SFR (Ha) 0.4 ratio -0.4 SFR [OII]

[OII] SFR SFR([OII]) = (1.4 +/- 0.4) x 10-41 x L([OII]) (Kennicutt 1998, 1992) Key Assumptions: Observed [OII]/Ha = 0.6 Observed [NII]/Ha = 0.5 (blended) No effect from ionization state of gas Independent of metallicity Salpeter IMF

Ionizing Radiation Field Starburst99 (Leitherer et al. 1999, Crowther et al. 2006) Instantaneous & Continuous Burst Models Extended Wolf-Rayet Atmospheres

Photoionization Models Kewley et al. (2001) Mappings III - radiative transfer including dust Sutherland & Dopita 1993, Groves et al. 2003, 2006 Metallicity: 0.05, 0.2, 0.4, 1.0, 2.0 x solar Ionization Parameter: 1e7, 2e7, 4e7, 8e7, 1.5e8, 3e8 cm/s alternative: CLOUDY (Ferland et al. 1998) Self-consistent photoionization models to calculate radiative transfer through gas in the presence of dust.

( ) Definitions Metallicity = Gas-phase Oxygen Abundance = log +12 Solar ~ 8.7 (Allende Prieto et al. 2001) log +12 ( ) O H Ionization parameter: q = SH nH (cm/s) H ionizing photons/Area/s hydrogen density

New [OII] calibration: Theoretical

New [OII] calibration: Theoretical kHa L([OII]) SFR([OII],Z) = a+ bZ - cZ2 + dZ3 where Z = metallicity = log(O/H)+12 Includes Metallicity & Ionization Parameter Correction Kewley, Geller, & Jansen (2004, AJ, 127, 2002)

New [OII] calibration: Theoretical rms=0.04-0.05 (c.f. 0.11)

Metallicity at High-z Lilly, Carollo & Stockton 2003: M91 0.5 < z < 1.0 : log(O/H)+12~8.9 (c.f. 8.6 locally) Hippelein et al. (2003): 0.25 < z < 1.2 : [OII]/Ha = 0.9 (intrinsic) our [OII]/Ha - metallicity calibration log(O/H)+12~8.77 Teplitz et al. (2003): 0.4 < z < 1.4 : [OII]/Ha = 0.45 (observed) = 0.83 (intrinsic) log(O/H)+12~8.81 Luminosity Selection Effect

High-z Galaxies 0.8 < z < 1.6 Hicks et al. (2002) 0.5 < z < 1.1 Tresse et al. (2002)

Star Formation History K98 [OII] SFR inconsistent reddening correction filled = [OII] unfilled = Ha data from Teplitz et al. (2003) Our [OII] SFR log(O/H)+12~8.6, consistent reddening correction also: Rosa-Gonzalez, Terlevich, & Terlevich (2002) Our [OII] SFR log(O/H)+12~8.8 consistent reddening and metallicity correction Kewley, Geller, & Jansen (2004)

Metallicity History Metallicity history of star-forming galaxies still largely theoretical. Nagamine et al. (2001)

Metallicity History Galactic Winds An idea of the extent and orientation of the galactic wind of M82 is seen in this image, which traces the ionised hydrogen (red) contained within it. The wind extends ~10,000 light years from the centre of the galaxy where the starbust is taking place. The burst of star formation powering the wind was probably caused by an interaction with the neighbouring galaxy M81 (not shown). Image credit: FOCAS, Subaru 8.2-m Telescope, NAOJ.

Theoretical Metallicity History Predicted for: Star-forming gas Stars Neutral gas Figure from Dave & Oppenheimer? Once done, copy to end of presentation for questions about stellar metallicities and DLAs Add a slide about stellar metallicities (Savaglio work) and DLA metallicity evolution (Ellison, Prochaska, Fall) - also include a plot from Wild, Hewitt, Pettini work on contribution of DLAs to SF history. e.g., Dave & Oppenheimer (2007)

Theoretical Metallicity History Predicted for: Star-forming gas Stars Neutral gas Figure from Dave & Oppenheimer? Once done, copy to end of presentation for questions about stellar metallicities and DLAs Add a slide about stellar metallicities (Savaglio work) and DLA metallicity evolution (Ellison, Prochaska, Fall) - also include a plot from Wild, Hewitt, Pettini work on contribution of DLAs to SF history. e.g., Dave & Oppenheimer (2007)

Metallicity Diagnostics “R23” Kewley & Dopita (2002, ApJS, 142, 35) Also: Pagel (1979), McCall et al. (1985), ..., Skillman et al. (1989), McGaugh (1991),..., Zaritsky et al. (1994), Charlot (2001), ...

Metallicity Diagnostics - [NII]/Ha Kewley & Dopita (2002) also: Denicolo, Terlevich & Terlevich (2002) Pettini & Pagel (2004) R23 and [NII]/Ha re-parameterized Kobulnicky & Kewley (2004)

Ionization Parameter - O32 q = SH nH (cm/s) H ionizing photons/Area/s hydrogen density Kewley & Dopita (2002)

Local Samples: NFGS + SDSS Kewley, Jansen & Geller (2005) 45,086 SDSS star-forming galaxies g-band covering fraction > 20%

GOODS+ : 0.3 < z< 1 ~450 galaxies from: GOODS + Lilly et al. (2003) Kobulnicky et al. (2003) Maier et al. (2004,05,06) Liang et al. (2004) Lamareille et al. (2005) Savaglio et al. (2005)

GOODS+ : 0.3 < z< 1 ~450 galaxies from: GOODS + Lilly et al. (2003) Kobulnicky et al. (2003) Maier et al. (2004,05,06) Liang et al. (2004) Lamareille et al. (2005) Savaglio et al. (2005)

High-z sample 5 galaxies: 1<z<1.5 (Shapley et al. 2005) [OII], [OIII], Hb, [NII] 7 galaxies: 2 < z < 2.5 (Shapley et al. 2004) [NII], Ha 2 galaxies: z=2.3, 2.9 (Kobulnicky & Koo 2000) [OII], [OIII], Hb 5 galaxies: 2.7<z<3.4 (Pettini et al. 2001) Check what the ensemble galaxy paper is by Shapley - is it the 2004 paper?

Metallicity Diagnostic Discrepancies Kewley & Ellison (2007) SDSS mass-metallicity relation Tremonti et al. (2004)

Metallicity Diagnostic Discrepancies Kewley & Ellison (2007)

Metallicity Diagnostic Discrepancies Before: After: Kewley & Ellison (2007)

Metallicity History 0<z<3 NFGS Lyman Break Galaxies SDSS 0.15 dex/z GOODS+ assumes upper branch Kewley & Kobulnicky (2006, in prep)

Metallicity History 0<z<3 Models: Dave & Oppenheimer (2006) Kewley & Kobulnicky (2006, in prep)

Metallicity History Bias: 0.4 < z < 1 Assumptions: R23 upper branch AV = 1 Kewley & Kobulnicky (2006, in prep)

Solution: 0.4 < z < 1 NIR multi-object spectroscopy Subaru - MOIRCS observations ongoing Soon to come: VLT - NIRMOS (2008/2009) Gemini-S - Flamingos-II (2008) Magellan - MMIRS (2008)

Metallicity History Bias: z > 1 Color selection BzK Lyman Break

High-z Metallicity Bias? Try alternative selection: Lensed galaxies GRB Hosts [OII], [OIII] emitters Luminous red star-forming galaxies

Alternative selection: Lensed Galaxies Lemoine-Busserolle et al. (2003) z=1.9 log(O/H)+12 ~ 7.6 +/- 0.2 log(O/H)+12 ~ 9.0 +/- 0.1

Metallicity History 0<z<3 Models: Dave & Oppenheimer (2006) Kewley & Kobulnicky (2006, in prep)

Alternative selection: GRB Hosts Local GRB hosts may favor low metallicity galaxies GRB Hosts Kewley et al. (2006)

SFR Conclusions Agreement between SFRIR and SFRHa Discrepancy between SFR[OII] and SFRHa: reddening and metallicity New theoretical SFR[OII] calibration removes this discrepancy ... but what if metallicity changes with redshift?

Metallicity Conclusions Metallicity History for star-forming galaxies Metallicity evolution observed First comparison with appropriate metallicities from cosmological hydrodynamic simulations Steeper Metallicity evolution predicted More work needed for robust metallicity history...

Future Directions GOODS Near-IR Spectra Near future: Subaru - MOIRCS - observations ongoing 2008-09: VLT, Magellan, Gemini-S COS: UV spectra => Si, N, C, abundances Modelling of emission-line + other selection effects Investigate alternative selection methods Near future:

Future Directions NIRSpec: faint More distant future: JWST galaxies z > 1 NIRSpec + MIRI: metallicity for z > 3 More distant future: JWST Microshutter Assembly - thousands of microshutters of NIRspec will allow many galaxies to be obtained spectroscopically at once. For example, in the same J-band spectrum, NIRspec will be able to simultaneously observe [NII]/Ha for galaxies at 0.4<z<1, [OIII]/Hb for galaxies at z=1.3 - 1.5. In H-band, [NII]/Ha could be obtained for those 1.3-1.5 galaxies, as well as [OII] for galaxies at z~3. In K, [OIII], Hb would be obtained for the z~3 galaxies. MIRI would be required for galaxies at redshifts > 3.

Future Directions NIRSpec: faint galaxies More distant future: JWST z > 1 NIRSpec + MIRI: metallicity for z > 3 More distant future: JWST NIRSpec NIRSpec + MIRI

Future Directions NIRSpec, MIRI More distant future: JWST metallicity for z > 1 FGS-TFI metallicity gradient evolution More distant future: JWST JWST simulation: Windhorst, Conselice & Petro

Future Directions NIRSpec, MIRI metallicity for z > 1 FGS-TFI metallicity gradient evolution More distant future: JWST Link SF & metallicity history through chemical evolution & galactic wind models JWST simulation: Windhorst, Conselice & Petro

Starburst99-Mappings On-Line L. Kewley & C. Leitherer Available Now! Starburst99-Mappings On-Line L. Kewley & C. Leitherer Starburst99-Mappings Interface: http://www.stsci.edu/science/starburst99/ Mappings Interface: http://www.ifa.hawaii.edu/~kewley/Mappings Pre-run model grids Interactive web form to run models

AGN Removal Kewley et al. 2001, 2006

AGN Removal Kewley, Heckman, & Kauffmann (in prep)

Aperture Effects Large scatter => SFR errors unless integrated spectra are used Kewley, Geller, & Jansen 2004 PASP, submitted covering fraction

Alternative selection: Lensed Galaxies Lemoine-Busserolle et al. (2003) z=1.9 log(O/H)+12 ~ 7.6 +/- 0.2 log(O/H)+12 ~ 9.0 +/- 0.1

Alternative selection: GRB Hosts Kewley, Brown & Geller (2006) Stanek et al. (2006)

IR SFRs SFR(IR) = 4.5 x 10-44 L(IR) 7.9 x 10-44 L(FIR) ~ (Kennicutt 1998, Calzetti et al. 2000) Assumptions: young stars dominate emission large optical depth continuous burst model Saltpeter IMF

[OII]/Ha & Reddening

[OII] and metallicity

Measuring Star Formation Rates Infrared SFRIR = kIR x LIR e.g., Kennicutt (1998) Figure credit: Dale et al. (2001) See also Sanders & Mirabel (1996)

Metallicity at Higher redshift Lilly, Carollo & Stockton (2003) Luminosity Selection Effect 0.5 < z < 1.0 CFRS log(O/H)+12~8.9 local NFGS: log(O/H)+12~8.6

High-z Galaxies 0.8 < z < 1.6 Hicks et al. (2002) 0.5 < z < 1.1 Tresse et al. (2002)

[OII] and luminosity Jansen et al. (2001)

Why are SFRs important? Galaxy evolution models Age, metallicity, SED Star formation history of galaxies Measured in infrared, optical, radio, UV, X-rays