Institut für Physik der Atmosphäre Institut für Physik der Atmosphäre Climate-Chemistry Interactions - User Requirements Martin Dameris DLR-Institut für.

Slides:



Advertisements
Similar presentations
Chantier Méditerranée – Aix-En-Provence – Nov /17 1. Main regional stakes - Ambient air quality - Chemistry-climate interactions - Impact on ecosystems.
Advertisements

Ko pplung von Dy namik und A tmosphärischer C hemie in der S tratosphäre Investigation of mutual influences of greenhouse effect and changes of dynamic.
ESF- MedCLIVAR Workshop Climate Change Modeling for the Mediterranean region, ICTP, Trieste, Italy, Oct 2008 Regional air quality decadal simulations.
A. Wahner et al., GEO-workshop Fifteen Years of Routine Aircraft Observations - MOZAIC A. Wahner, A. Volz-Thomas Research Centre Jülich J.-P.
1 The GEMS production systems and retrospective reanalysis Adrian Simmons.
Martin G. Schultz, MPI Meteorology, Hamburg GEMS proposal preparation meeting, Reading, Dec 2003 GEMS RG Global reactive gases monitoring and forecast.
Fires, Atmospheric Composition and Earth System Feedbacks Oliver Wild Centre for Atmospheric Science Cambridge JULES Science Meeting, Exeter, June.
Imposed ozone calculations Qualitatively same behaviour in all models (which qualitiatively agrees with the observations). Significant quantitative differences.
Norwegian Institute for Air Research The Tropopause at High Northern Latitudes: Trends and Influence of Atmospheric Dynamics Georg Hansen and.
Institut für Physik der Atmosphäre Ensemble Climate-Chemistry simulations for the past 40 years Volker Grewe and the DLR/MPI Team Institut für Physik der.
Simulating the atmospheric composition during the last decades: Evaluation with long-term observational datasets and the impact of natural climate variability.
Paolo Tuccella, Gabriele Curci, Suzanne Crumeyrolle, Guido Visconti
Whitecaps, sea-salt aerosols, and climate Magdalena D. Anguelova Physical Oceanography Dissertation Symposium College of Marine Studies, University of.
Henk Eskes, William Lahoz, ESTEC, 20 Jan 2004 The role of data assimilation in atmospheric composition monitoring and forecasting Henk Eskes, William Lahoz.
Institut für Physik der Atmosphäre Institut für Physik der Atmosphäre Modelisation a meso-echelle au IPA-DLR : Des eclairs au trafic aérien Mesoscale Modeling.
Geophysical Fluid Dynamics Laboratory Review June 30 - July 2, 2009 Geophysical Fluid Dynamics Laboratory Review June 30 - July 2, 2009.
I/1 Overview: Atmospheric transport and ozone chemistry SS2008 Learning more about variability of atmospheric ozone related to transport and chemistry.
Requirements for monitoring the global tropopause Bill Randel Atmospheric Chemistry Division NCAR.
Scientific Advisory Committee Meeting, November 25-26, 2002 Modeling of the Middle and Upper Atmosphere M. A. Giorgetta E. Manzini 1, M. Charron 2, H.
Geophysical Fluid Dynamics Laboratory Review June 30 - July 2, 2009 Geophysical Fluid Dynamics Laboratory Review June 30 - July 2, 2009.
Indicators for policy support of atmosphere related environmental problems Robert Koelemeijer National Institute for Public Health and the Environment.
The Atmosphere: Oxidizing Medium In Global Biogeochemical Cycles EARTH SURFACE Emission Reduced gas Oxidized gas/ aerosol Oxidation Uptake Reduction.
THE ATMOSPHERE: OXIDIZING MEDIUM IN GLOBAL BIOGEOCHEMICAL CYCLES
Modeling of Stratospheric Ozone in the Climate System Steven Pawson GMAO, NASA GSFC Judith Perlwitz CIRES, CU/NOAA ESRL Richard S. Stolarski Atmospheric.
National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory Princeton, NJ Evolution of Stratospheric.
This Week—Tropospheric Chemistry READING: Chapter 11 of text Tropospheric Chemistry Data Set Analysis.
STRATOSPHERIC CHEMISTRY. TOPICS FOR TODAY 1.Review of stratospheric chemistry 2.Recent trends in stratospheric ozone and forcing 3.How will stratospheric.
GEOS-CHEM GLOBAL 3-D MODEL OF TROPOSPHERIC CHEMISTRY Assimilated NASA/DAO meteorological observations for o x1 o to 4 o x5 o horizontal resolution,
Effect of Stratospheric Water Vapor Change on Ozone Layer and Climate Wenshou Tian Martyn P. Chipperfield 1 Collage of the Atmospheric Science Lanzhou.
Next Gen AQ model Need AQ modeling at Global to Continental to Regional to Urban scales – Current systems using cascading nests is cumbersome – Duplicative.
Influence of the sun variability and other natural and anthropogenic forcings on the climate with a global climate chemistry model Martin Schraner Polyproject.
Dynamical control of ozone transport and chemistry from satellite observations and CCMs Mark Weber 1, Ingo Wohltmann 2, Veronika Eyring 3, Markus Rex 2,
I/1 Atmospheric transport and ozone chemistry Lecture SS 2006 Thursday, 14:15h (sharp)-15:45h Miriam Sinnhuber U3225 Tel
Lecture 16 Observations of climate change Feedback mechanisms Air pollution The stratospheric ozone hole Changing land surfaces Greenhouse gases and global.
Dynamical perspective on the middle atmosphere research in Sweden , SRS-Meeting, Stockholm Heiner Körnich, MISU 1.
Links between ozone and climate J. A. Pyle Centre for Atmospheric Science, Dept of Chemistry University of Cambridge Co-chair, SAP 7th ORM, Geneva, 19.
GEWEX 1988  SPARC 1992  WOCE CLIVAR 1995  TOGA WGNE WGCM WGSF ACSYS/CliC 1994–2003/2000  SOLAS >
Temperature trends in the upper troposphere/ lower stratosphere as revealed by CCMs and AOGCMs Eugene Cordero, Sium Tesfai Department of Meteorology San.
EOS CHEM. EOS CHEM Platform Orbit: Polar: 705 km, sun-synchronous, 98 o inclination, ascending 1:45 PM +/- 15 min. equator crossing time. Launch date.
Analysis of a simulation with prognostic ozone in ARPEGE-Climat Jean-François Royer, Hubert Teysseidre, Hervé Douville, Sophie Tyteca Meteo-France,
EOS CHEM. EOS-CHEM Platform Orbit: Polar: 705 km, sun-synchronous, 98 o inclination, ascending 1:45 PM +/- 15 min. equator crossing time. Launch date.
1 UIUC ATMOS 397G Biogeochemical Cycles and Global Change Lecture 5: Atmospheric Structure / Earth System Don Wuebbles Department of Atmospheric Sciences.
Chemistry Climate Modeling of the UTLS An update on model inter-comparison and evaluation with observations Andrew Gettelman, NCAR & CCMVal Collaborators.
Past and Future Changes in Southern Hemisphere Tropospheric Circulation and the Impact of Stratospheric Chemistry-Climate Coupling Collaborators: Steven.
Human fingerprints on our changing climate Neil Leary Changing Planet Study Group June 28 – July 1, 2011 Cooling the Liberal Arts Curriculum A NASA-GCCE.
ATMOSPHERIC CHEMISTRY APPLICATIONS WORKSHOP January 2004, ESTEC Albert P H Goede Objective of the Workshop User Consultation on present and future.
Ko pplung von Dy namik und A tmosphärischer C hemie in der S tratosphäre H 2 O in models and observations Coupling of dynamics and atmospheric chemistry.
Carbonaceous aerosols – a global modeling view Betty Croft and Ulrike Lohmann * Department of Physics and Atmospheric Science Dalhousie University, Halifax,
Cargese UTLS ozone and ozone trends 1 UTLS ozone and ozone trends D. Fonteyn (My apologies) Given by W. Lahoz (My thanks)
Recent Trend of Stratospheric Water Vapor and Its Impacts Steve Rieck, Ning Shen, Gill-Ran Jeong EAS 6410 Team Project Apr
Model Simulation of tropospheric BrO Xin Yang, J. Pyle and R. Cox Center for Atmospheric Science University of Cambridge 7-9 Oct Frascati, Italy.
QUESTIONS 1. How does the thinning of the stratospheric ozone layer affect the source of OH in the troposphere? 2. Chemical production of ozone in the.
A modelling study on trends and variability of the tropospheric chemical composition over the last 40 years S.Rast(1), M.G.Schultz(2) (1) Max Planck Institute.
10-11 October 2006HYMN kick-off TM3/4/5 Modeling at KNMI HYMN Hydrogen, Methane and Nitrous oxide: Trend variability, budgets and interactions with the.
Status of MOZART-2 Larry W. Horowitz GFDL/NOAA MOZART Workshop November 29, 2001.
The impact of short-lived source gases on the ozone layer under the influence of a changing climate A proposed contribution to G-SPARC Björn-Martin Sinnhuber.
UTLS Chemical Structure, ExTL Summary of the talks –Data sets –Coordinates –Thickness of the ExTL (tracers based) Outstanding questions Discussion.
Ko pplung von Dy namik und A tmosphärischer C hemie in der S tratosphäre MIcrophysical Processes in the Stratosphere and their nonlinear interactions with.
Breakout Session 1 Air Quality Jack Fishman, Randy Kawa August 18.
Dynamical control of ozone transport and chemistry from satellite observations and coupled chemistry climate models Mark Weber 1, Sandip Dhomse 1, Ingo.
FIVE CHALLENGES IN ATMOSPHERIC COMPOSITION RESEARCH 1.Exploit satellite and other “top-down” atmospheric composition data to quantify emissions and export.
CAPACITY User Requirements by Albert P H Goede 7 April 2004, KNMI Objective of Work Package 1000 Definition of User Requirements for Operational Monitoring.
TROPOSPHERIC OZONE AS A CLIMATE GAS AND AIR POLLUTANT: THE CASE FOR CONTROLLING METHANE Daniel J. Jacob with Loretta J. Mickley, Arlene M. Fiore, Yaping.
Chemistry-climate interactions in CCSM
INTERCONTINENTAL TRANSPORT: CONCENTRATIONS AND FLUXES
Atmospheric modelling of the Laki eruption
A model of sea salt aerosol for Cape Grim Preliminary investigations
Daniel J. Jacob Harvard University
Kelly Chance Smithsonian Astrophysical Observatory
Transition of WCRP projects beyond 2013: SPARC legacy and issues Christian von Savigny (IUP Bremen) on behalf of SPARC.
Presentation transcript:

Institut für Physik der Atmosphäre Institut für Physik der Atmosphäre Climate-Chemistry Interactions - User Requirements Martin Dameris DLR-Institut für Physik der Atmosphäre Oberpfaffenhofen

Institut für Physik der Atmosphäre Modelling of climate-chemistry interactions - Why? Climate change detected (e.g. IPCC, 2001). Changes in atmospheric composition observed (e.g. WMO, 2003). Coupling of chemical processes in climate models. Climate-Chemistry Models (CCMs) have been employed to examine the feedback between dynamical, physical and chemical processes.

Institut für Physik der Atmosphäre Modelling of climate-chemistry interactions - Why? The primary goals of CCMs are to support analyses of (long-term) observations of trace gases and aerosols, evaluate emission control measures, determine and quantify underlying dynamical, physical and chemical processes, and their feedback, explain recent changes (variability), assess possible future trends.

Institut für Physik der Atmosphäre Modelling of climate-chemistry interactions - scientific applications or problems Tropospheric air quality (chemical weather). The effect of surface pollution (including traffic), aviation and natural factors on chemical, radiative and dynamical (e.g. long-range transport) processes in the upper troposphere and stratosphere. How do climate change impact atmospheric chemistry (composition) and vice versa? A key science issue is to determine the timing of ozone recovery and future ultraviolet radiation at the surface.

Institut für Physik der Atmosphäre Development of CCMs - general progress in recent years about 15 years ago first coupling of climate models (GCMs) to simplified chemistry (e.g. Cariolle et al., 1990). about 7 years ago off-line climate-chemistry models (CCMs) with complex chemistry (e.g. Steil et al., 1998); first results regarding ozone recovery (e.g. Dameris et al.,1998; Shindell et al., 1998). today interactively coupled CCMs available (e.g. Hein et al., 2001); investigations of feedback between dynamical, physical, and chemical processes (e.g. Schnadt et al., 2002; Austin et al., 2003).

Institut für Physik der Atmosphäre The CCM E39/C - Description of model system Surface, aircraft, lightning NO x Emissions [Tg N/a] Radiation Long-wave Short-wave Chemical Boundary Conditions Atmosphere: CFCs, at 10 hPa: ClX, NO y, Surface: CH 4, CO Chemistry (CHEM) Methane oxidation Heterogeneous Cl reactions PSC I, II, aerosols Dry/wet deposition Photolysis Feedback O 3, H 2 O, CH 4, N 2 O, CFCs Prognostic variables (vorticity, divergence, temperature, specific humidity, log-surface pressure, cloud water), hydrological cycle, diffusion, gravity wave drag, transport of tracers, soil model, boundary layer; sea surface temperatures. T30, 39 layers, top layer centred at 10 hPa Dynamics (ECHAM) Hein et al., 2001

Institut für Physik der Atmosphäre Application of CCMs for process studies Investigation of chemical composition and climate variability (change), tropospheric and stratospheric coupling, especially in order to determine and quantify feedback processes.

Institut für Physik der Atmosphäre Comparison - E39/C vs. MSU: temperature anomalies ( ), km, global mean

Institut für Physik der Atmosphäre Comparison - E39/C vs. NCEP analysis: zonal mean temperature (80°N, 30 hPa) NCEP E39/C Type I PSC Type II PSC Hein et al., 2001 E19/C Type I PSC

Institut für Physik der Atmosphäre Comparison - E39/C vs. NCEP analysis: zonal mean wind (60°N, 30 hPa) E39/C NCEP Hein et al., 2001 E19/C

Institut für Physik der Atmosphäre Comparison - E39/C vs. GOME: ozone columns [in DU] Gome data provided by DLR-DFD, Dr. M. Bittner

Institut für Physik der Atmosphäre Comparison - E39/C vs. ground based and TOMS-data: climatological mean values of total ozone and trends Model Observations Hein et al., 2001; Schnadt et al., 2002 Latitude McPeters et al.,

Institut für Physik der Atmosphäre Comparison - E39/C vs. GOME: NO 2 tropospheric columns (July) E39/C (1990) GOME ( ) Lauer et al., 2001; GOME-data provided by IUP, A. Richter and J. Burrows

Institut für Physik der Atmosphäre Comparison - E39/C vs. GOME: NO 2 tropospheric columns, annual cycle over Africa Lauer et al., 2001; Matthes, 2003 ECHAM4/CHEM ECHAM4/CBM (G.-J. Roelofs, Utrecht) GOME

Institut für Physik der Atmosphäre Comparison - E39/C vs. GOME: NO 2 tropospheric columns, annual cycle over Africa and Europe Lauer et al., 2001; Matthes, 2003 ECHAM4/CHEM ECHAM4/CBM (G.-J. Roelofs, Utrecht) GOME

Institut für Physik der Atmosphäre Application of CCMs for sensitivity studies E.g., assessments of future chemical composition, climate change, feedback processes in the lower stratosphere, in particular with respect to ozone.

Institut für Physik der Atmosphäre E39/C - predictions Southern / Northern Hemisphere spring time adapted from Schnadt et al., 2002

Institut für Physik der Atmosphäre E39/C and others - predictions Austin, Schnadt, Dameris, et al., 2003 SH: ozone recovery expected to begin within the range 2001 to 2008 TOMSE39/C NH: ozone recovery expected to begin within the range 2004 to 2019

Institut für Physik der Atmosphäre Evaluation of CCMs - user requirements Satellite data products are required for validation of CCMs! Global coverage (hor. resolution: 50*50 km 2 ). Long-term observation of spatial-temporal variability (inter- annual, seasonal, diurnal) of dynamical, physical and chemical parameters, in particular temperature, wind, cloud cover, H 2 O, CH 4, O 3, CO, OH, NO x, HNO 3,N 2 O, aerosol microphysics. Profiles (vert. resolution: 1 km; troposphere: at least 2-3 independent pieces of height resolved information, with one point in the boundary layer). Temporally high-resolution sampling (troposphere: 60 min.; stratosphere: 3 hours).

Institut für Physik der Atmosphäre Evaluation of CCMs - user requirements Geostationary platforms are required! (3-5 missions necessary to get global coverage)

Institut für Physik der Atmosphäre The End. Thank you!