Institut für Physik der Atmosphäre 1 Evaluation of a numerical thunderstorm study with POLDIRAD and lightning observations Oberpaffenhofen, 8 February.

Slides:



Advertisements
Similar presentations
Quantitative evaluation of regional precipitation forecasts using multi-dimensional remote sensing observations (QUEST) Nicole van Lipzig a, Susanne Crewell.
Advertisements

Institut für Physik der Atmosphäre Precipitation observation networks Martin Hagen DLR Oberpfaffenhofen.
Institut für Physik der Atmosphäre Identification of Convective Hotspots in Mountainous Terrain Martin Hagen, Leslie Grebe, Joël van Baelen, Evelyne Richard.
Institut für Physik der Atmosphäre 1 Summary of WG PPL discussion, 4th COPS workshop, Sept Summary of WG PPL discussion 25 Sept Participants:
Institut für Physik der Atmosphäre POLDIRAD and LINET observations during COPS Martin Hagen and Hartmut Höller DLR Oberpfaffenhofen.
Institut für Physik der Atmosphäre Life Cycle of Deep Convection during the COPS Field Campaign (LIFCOC) Martin Hagen, Hartmut Höller, George Craig Institut.
Slide 1 Improved Initialization for Precipitation Forecasts: Analysis of the ETReC missions during COPS 2007 Andreas Dörnbrack, Martin Wirth, and George.
Institut für Physik der Atmosphäre Effect of Drop Oscillations on Polarimetric Radar Parameters Martin Hagen & Miklós Szakáll.
Estimation of clouds in atmospheric models Tomislava Vukicevic CIRA/CSU and PAOS/CU.
JMA Takayuki MATSUMURA (Forecast Department, JMA) C Asia Air Survey co., ltd New Forecast Technologies for Disaster Prevention and Mitigation 1.
1 Ground Based Meteorological Radars Presented By: David Franc NOAAs National Weather Service September 2005.
Institut für Physik der Atmosphäre Institut für Physik der Atmosphäre Climate-Chemistry Interactions - User Requirements Martin Dameris DLR-Institut für.
Future Radar and Satellite Technology Daniel C. Miller National Weather Service Columbia, SC.
Institut für Physik der Atmosphäre Institut für Physik der Atmosphäre Object-Oriented Best Member Selection in a Regional Ensemble Forecasting System Christian.
Introduction to data assimilation in meteorology Pierre Brousseau, Ludovic Auger ATMO 08,Alghero, september 2008.
Institut für Physik der Atmosphäre Institut für Physik der Atmosphäre Modelisation a meso-echelle au IPA-DLR : Des eclairs au trafic aérien Mesoscale Modeling.
WMO International Cloud Modeling Workshop, July 2004 A two-moment microphysical scheme for mesoscale and microscale cloud resolving models Axel Seifert.
1 [1] Central Institute for Meteorology and Geodynamics, Hohe Warte, Vienna [2] Deutsches Zentrum für Luft und Raumfahrt, Institut für Physik der Atmosphäre,
Deep Convective Clouds and Chemistry (DC3)* Field campaign to study the impact of midlatitude deep convection on the upper troposphere-lower stratosphere.
Predicting lightning density in Mediterranean storms based on the WRF model dynamic and microphysical fields Yoav Yair 1, Barry Lynn 1, Colin Price 2,
The Effect of the Terrain on Monsoon Convection in the Himalayan Region Socorro Medina 1, Robert Houze 1, Anil Kumar 2,3 and Dev Niyogi 3 Conference on.
Roll or Arcus Cloud Supercell Thunderstorms.
Institut für Physik der Atmosphäre Status of working group Precipitation Processes and Live cycle Martin Hagen DLR Oberpfaffenhofen.
Institut für Physik der Atmosphäre POLDIRAD Polarization Diversity Doppler Radar Martin Hagen DLR Oberpfaffenhofen.
Roll or Arcus Cloud Squall Lines.
Orographic triggering and mesoscale organization of extreme storms in subtropical South America Kristen Lani Rasmussen Robert A. Houze, Jr. ICAM 2013,
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Operational thunderstorm nowcasting in the Alpine region.
Campaign data for parameterization tests: Examples from MAP‘99 VERTIKATOR’02, AWIATOR‘03 Hans Volkert, Thorsten Fehr, Christoph Kiemle, Oliver Reitebuch,
On the relationship of in-cloud convective turbulence and total lightning Wiebke Deierling, John Williams, Sarah Al-Momar, Bob Sharman, Matthias Steiner.
Ensemble Numerical Prediction of the 4 May 2007 Greensburg, Kansas Tornadic Supercell using EnKF Radar Data Assimilation Dr. Daniel T. Dawson II NRC Postdoc,
In this work we present results of cloud electrification obtained with the RAMS model that includes the process of charge separation between ice particles.
Dual Polarization Martin Hagen, Elena Saltikoff Deutsches Zentrum für Luft- und Raumfahrt (DLR) Oberpfaffenhofen, Germany Finnish Meteorological Institute.
Remote Sensing and Modeling of Hurricane Intensification Steve Guimond and Jon Reisner Atmospheric Dynamics EES-2 FSU.
Dehydration in the Tropical Tropopause Layer of a Cloud- Resolving Model University of Reading, Department of Meteorology * DLR Oberpfaffenhofen, Institut.
A Conceptual Model for the Hydrometeor Structure of Mesoscale Convective Systems during the MJO Active Stage Hannah C. Barnes Robert A. Houze, Jr. University.
A preliminary experiment on the simulation of thunderstorm electrification through GRAPES Yijun Zhang Chinese Academy of Meteorological Sciences, Beijing,
WMO workshop, Hamburg, July, 2004 Some aspects of the STERAO case study simulated by Méso-NH by Jean-Pierre PINTY, Céline MARI Christelle BARTHE and Jean-Pierre.
Assimilating Reflectivity Observations of Convective Storms into Convection-Permitting NWP Models David Dowell 1, Chris Snyder 2, Bill Skamarock 2 1 Cooperative.
Edward Mansell National Severe Storms Laboratory Donald MacGorman and Conrad Ziegler National Severe Storms Laboratory, Norman, OK Funding sources in the.
Field Mill. Charging by induction Initially neutral Introduce a charge, creating an electric field E.
Aktionsprogramm Thorsten Reinhardt, DWD Sensitivity Tests Regarding Assumed Graupel Particle Properties Motivation: Gilmore et al (MWR 2004) found.
Alexander Ryzhkov Weather Radar Research Meteorological Applications of Dual-polarization Radar.
DRAFT – Page 1 – January 14, 2016 Development of a Convective Scale Ensemble Kalman Filter at Environment Canada Luc Fillion 1, Kao-Shen Chung 1, Monique.
Assimilation of Lightning Data Using a Newtonian Nudging Method Involving Low-Level Warming Max R. Marchand Henry E. Fuelberg Florida State University.
Deutsches Zentrum für Luft- und Raumfahrt e.V. Institut für Physik der Atmosphäre Case Study: 1 st July 2010, 12:00 UTC.
Lightning Mapping Technology & NWS Warning Decision Making Don MacGorman, NOAA/NSSL.
Assimilation of Pseudo-GLM Observations Into a Storm Scale Numerical Model Using the Ensemble Kalman Filter Blake Allen University of Oklahoma Edward Mansell.
ARPS( Advanced Regional Prediction System ) Version Center for Analysis and Prediction of Storms (CAPS), Oklahoma University tridimensional compressible.
Edward “Ted” Mansell NSSL/WRDD Thunderstorm Electrification and Lightning Simulation.
Relationships between total lightning activity, microphysics, and kinematics during the 24 September 2012 HyMeX MCS system J.-F. Ribaud, O. Bousquet and.
Severe convection in Brazil Nikolai Dotzek, Hartmut Höller (DLR-IPA)
Paper Review Jennie Bukowski ATS APR-2017
By SANDRA E. YUTER and ROBERT A. HOUZE JR
Three-category ice scheme
Sensitivity of WRF microphysics to aerosol concentration
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Presentation transcript:

Institut für Physik der Atmosphäre 1 Evaluation of a numerical thunderstorm study with POLDIRAD and lightning observations Oberpaffenhofen, 8 February 2002 Thorsten Fehr Institut für Physik der Atmosphäre Deutsches Zentrum für Luft- und Raumfahrt, e.V. (DLR)

Thorsten Fehr, Institut für Physik der Atmosphäre, DLR 2 Motivation Investigation of Nitrogen oxides (NO x ) produced by lightning Idealized case study with realistic dynamics Evaluation of simulation results with observations EULINOX Project Excellent data coverage for the 21 July 1998 storm Radar, lightning, aircraft, radiosondes...

Thorsten Fehr, Institut für Physik der Atmosphäre, DLR 3 Lightning and Polarimetric Radar ONERA ITF System 3D-Detection of Lightning (114 MHz) Interferometer DLR Polarimetric Doppler Radar: POLDIRAD C-Band ( = 5.45 cm) Doppler Winds Polarimetric Capabilities Hydrometeor Classification BLIDS: Siemens AG 2D-Positioning (VLF/LF) Time-of-Arrival

Thorsten Fehr, Institut für Physik der Atmosphäre, DLR 4 Numerical Model Mesoscale Model MM5 non-hydrostatic Bulk microphysics flat orography Resolution x=1km 50 vertical levels Initialization : Single Sounding Hot Bubble Lightning Parameterization Modified approach by Price and Rind, 1998 Total Flash Frequency: f fl = 1.29x10 -6 w max 4.55 Ratio of intracloud (IC) to cloud-to-ground(CG) flashes: = f IC /f CG = P 4 (Z fr )

Thorsten Fehr, Institut für Physik der Atmosphäre, DLR 5 Radar and Model MM5 (1.5°)POLDIRAD (1°)

Thorsten Fehr, Institut für Physik der Atmosphäre, DLR 6 Radar and Model: Supercell

Thorsten Fehr, Institut für Physik der Atmosphäre, DLR 7 Lightning and Model

Thorsten Fehr, Institut für Physik der Atmosphäre, DLR 8 Lightning and Model: Supercell Good Correlation during strong convection Poor correspondence during decay/strati- form stage Parameterization cannot applied for the complete lifecycle New Concepts (?)

Thorsten Fehr, Institut für Physik der Atmosphäre, DLR 9 ITF Lightning Data and POLDIRAD (I) Reflectivity and 1 min of ITF activity

Thorsten Fehr, Institut für Physik der Atmosphäre, DLR 10 ITF Lightning Data and POLDIRAD (II) Classification: Höller et al., July 98 Storm Most flashes in graupel/hail regions Graupel Hail

Thorsten Fehr, Institut für Physik der Atmosphäre, DLR 11 Conclusions for Model Supercell Comparison with Radar data shows significant similarities The lightning parameterization produces comparable flash frequencies for the convective regime Simulated Supercell represents the observed storm in general dynamical and microphysical properties Model storm can be use for further studies (lightning NO x, development of new parameterizations,...)

Thorsten Fehr, Institut für Physik der Atmosphäre, DLR 12 Outlook Improved lightning parameterization: F lightning = F lightning (v i, q i, v i, q i ) Radar Polarimetry Assimilation of meteorological parameters derived from lightning observations, e.g.: z = z (f CG ) RR = RR(f lightning ) Adverse weather warning

Thorsten Fehr, Institut für Physik der Atmosphäre, DLR 13