Principles of weather forecasting

Slides:



Advertisements
Similar presentations
Chapter 13 Weather Forecasting.
Advertisements

What is a Synoptic Weather Map?
DIFAX Maps / Upper Air Charts
SCIENCE NEWS Magnitude CENTRAL ITALY Magnitude CENTRAL ITALY.
Introduction to Upper Air Data
3.01 Investigate the water cycle including the processes of: Evaporation. Condensation. Precipitation. Run-off.
Weather Forecasting and Prediction. Methods of Forecasting  Step 1 - Outside!  Step 2 - Satellite maps  Step 3 - Radar imagery  Step 4 - Surface and.
Supplemental Topic Weather Analysis and Forecasting.
Wednesday, November 16th Attendance Attendance Go over Unit Test 3 Go over Unit Test 3 Make-up work and/or weather dvd Make-up work and/or weather dvd.
SC.912.E.7.5 Predict future weather conditions based on present observations and conceptual models and recognize limitations and uncertainties of such.
Upper Air Charts By Tom Collow November 8, Reading Upper Air Charts Temperature (°C) Dewpoint Depression (°C) Height Wind direction and speed (knots)
DIFAX Maps Weather maps generated by the NWS Before the Internet or AWIPS, these were the basic weather analysis and forecast charts used by meteorologists.
Lecture 5 (10/07) METR 1111 Isolining and Upper Air Maps.
20.5 Forecasting Weather Objectives
Chapter 19.  Result of intense convection  Associated with heating Earth’s surface ◦ During spring, summer, and fall  Three-stage life cycle: ◦ Beginning.
Classroom use of web- sourced weather maps Mark Powers Vergennes Union High School
Materials Adapted from The University of Georgia
Measurements and Data Analysis Discussion Sections 302 and 303.
Contouring and Map Analysis Lecture 2 February 4, 2010.
Weather Analysis pg. 81. Recording data after weather data is collected it is plotted on a map using station models station models- record of weather.
Upper Air Charts Before the Internet or AWIPS, DIFAX maps were the basic weather analysis and forecast charts used by meteorologists They were only available.
Unit 4 Lesson 5 Notes Answer Key
ABC’s of weather forecasting NOAA/NATIONAL WEATHER SERVICE WFO BALTIMORE / WASHINGTON OPEN HOUSE – APRIL 30-MAY 1, 2016 RAY MARTIN –– Lead Forecaster.
Part I Maps and Numbers.  Station Models  Isoline Maps.
Chapter 20 Section 5 Forecasting Weather Objectives: -Compare and contrast the different technologies used to gather weather data -Analyze weather symbols,
Unit 4 Lesson 5 Weather Maps and Weather Prediction
The Course of Synoptic Meteorology
SATELLITE IMAGERY PRACTICE
Exam 3 Thursday Nov. 18. This exam will cover the following chapters in the text book Chapter 8 Pressure and Wind Chapter 9 Small Scale and Local System.
SO441 Synoptic Meteorology
LAB 4 due this Friday, September 26 before class
Chapter 3: Physical Geography Climate and Vegetation
Predicting Weather Chapter 6 Lesson 3 Pages
Lesson 3: Air Masses.
Contouring and Map Analysis
Weather Forecasting.
Synoptic Weather.
The art of weather forecasting
Forecasting Techniques
Better Forecasting Bureau
Winter Forecasting Tips By Rick Garuckas and Andrew Calvi
Need to condense this information in a small space
Location – STATE COLLEGE TEMP – PRECIP – SKY COVER
Unit 5 Lesson 3 How is Weather Predicted?
Surface Weather Map a.k.a: Surface Synoptic Chart.
WHAT AFFECTS CLIMATE IN CANADA?
Learning objective: To be able to describe the distribution of hazards
Essential Questions Why is accurate weather data important?
Basic Forecasting Tips By Rick Garuckas and Andrew Calvi
Much information is needed to interpret what is happening with the atmosphere.
Surface Weather Observations
The Course of Meteorological Instrumentation and Observations
Unit 4 Lessons Vocabulary.
Upper Air Data The Atmosphere is 3D and can not be understood or forecast by using surface data alone.
CLIMO EXERCISE LONG-TERM AVERAGES.
Climate Pages What is the difference between climate and weather? Weather describes atmospheric conditions from moment to moment Climate.
De donde son ustedes?.
Location – STATE COLLEGE TEMP – PRECIP – PRECIP – DEW 65
Section 3: Gathering Weather Data
Upper Air Observations The atmosphere is 3D and can not be understood or forecast by using surface data alone ATM 101W2019.
OK-FIRST Full Certification Course
Surface Weather Map a.k.a: Surface Synoptic Chart.
Weather Forecasting.
Chapter 20.1 Air Masses and Weather.
Weather The present state in the atmosphere at a given location for a short period of time.
Place these notes into your Meteorology Notebook
Representing Climate Data
Name______________________ Date_____________
The Course of Synoptic Meteorology
Do Now Predict why weather could be different on the front side of a mountain (windward) than on the back side of the mountain (Leeward). Explain.
Presentation transcript:

Principles of weather forecasting SO441: Lesson 2 Principles of weather forecasting

General approach to forecasting Requires answers to the following questions: What physical processes and which weather systems will affect the forecast location during the forecast period? Where were the key weather systems in the recent past, and where are they currently? How are they expected to evolve leading up to the forecast period? Were the expected processes operating at the forecast location in the recent past, and are they operating now? In what way will the expected processes and weather systems specifically affect weather conditions in the forecast location? Forecast from www.weather.gov

My approach to forecasting Where am I forecasting for? What am I forecasting for? Temp? Precip? Cloud cover? Wind? When am I forecasting for? Short term (0-1 days)? Longer term (2+ days)? What details/climatological info do I know (or can I find out) about the area? What information is available? Surface, upper-air, radiosonde, satellite, radar, model? Have others already issued a forecast? Either myself/my group previously for the same area, or another agency (e.g., NOAA or local National Weather Service) for the general area source: www.pivotalweather.com

My approach to forecasting Start with the current “big picture” Water vapor satellite imagery http://rammb.cira.colostate.edu/ramsdis/online/loop_640.asp?product=goes-east_16km_psir3 Upper-air charts source: http://weather.rap.ucar.edu/upper/

My approach to forecasting Zoom to the regional Surface data, regional visible satellite, regional radar (if appropriate) source: http://weather.rap.ucar.edu/surface/ source: http://weather.rap.ucar.edu/satellite/ source: http://radar.weather.gov/Conus/northeast.php

My approach to forecasting Focus on the local Upper-air sounding, radar source: http://weather.rap.ucar.edu/upper/iad.gif source: http://radar.weather.gov/radar_lite.php?product=N0R&rid=LWX&loop=no

My approach to forecasting Then turn to model predictions

My approach to forecasting Start with the current “big picture” Water vapor satellite imagery Upper-air charts Zoom to the regional Surface data, regional visible satellite, regional radar (if appropriate) Focus on the local Upper-air sounding, radar Then turn to model data

Forecast process Background information Geography, topography, vegetation, elevation Climatology: typical regimes? Local time of sunrise and sunset, declination angle Nearby observing stations: surface, upper-air Mesoscale site characteristics (urban, rural, near body of water) Current climatology: drought, flood, heavy snow?

Planetary, synoptic, and mesoscale context: the forecast funnel Focusing only on local conditions will lead to erroneous forecast Weather to affect an area will likely have traveled large distances to arrive there Or possibly not even have formed source: Lackmann (2011)

Planetary, synoptic, and mesoscale context: the forecast funnel Hemispheric: What characteristics of the planetary-scale pattern are relevant? Upper-level troughs? Ridges? Jet stream speed Any anomalies? 500-mb geopotential height + sea level pressure source: Lackmann (2011)

Planetary, synoptic, and mesoscale context: the forecast funnel Weather systems (low or high pressure) affecting the area both currently and in future Close attention to model development of future systems Satellite + radar imagery, upper-air and surface charts source: Lackmann (2011)

Planetary, synoptic, and mesoscale context: the forecast funnel Frontal systems, Current precipitation Bodies of water and the sea surface temperature/expected wind direction source: Lackmann (2011)

Forecast parameters Maximum & minimum temperature Precipitation Wind speed and sky cover Other relevant issues, more specific to the needs of the recipient of the forecast (visibility, air quality, heat index/wind chill, severe thunderstorms, etc.)

Weather briefing Start with a big picture of current conditions Include any items of interest: large storms, tropical cyclones, “interesting weather” anywhere in the globe Be sure to give context and explain any items highlighted in the big picture Move down the forecast funnel to the regional, then local scales Turn to model data: short-term NAM, long-term GFS Upper-levels (500 hPa, 300 hPa, 700-850 hPa) Surface: MSLP, temperature, dew point temperature, wind direction/speed Precipitation

Rules of Isoplething Adapted from College of DuPage Never violate a valid data point. Only in extreme and defendable circumstances should data be omitted. Analyze for all given data. Interpolate as much as possible. Allow for extreme packing of isolines if that is defendable. Smooth isolines and, whenever possible, keep pacing consistent. Do not analyze for what does not exist. Do not assume data. There should be no features smaller than the distance between data points. Isolines cannot intersect nor can they suddenly stop. Just as data is continuous, so are isolines. The exception to this is naturally at the end of a page. Label all closed isolines with appropriate markings (i.e. "H" or "L") in bold and large letters. Label the maximum and minimum values with a small underline. Label the ends of the lines neatly and consistently. Make sure that any abbreviations are understandable. Title the map and include time. Analyze in even multiples of the interval of analysis. Remember that each line must represent all areas with the specified value. On one side of the line, values will be lower than the value on the line and on the other side, values will be higher. Use a good pencil and initially sketch lines lightly. If needed, make them smooth by darkening the lines after you know where they should be placed. Have a good eraser handy. Start with a line that gives you a good understanding of what is happening. This may be in the middle or near the extremes. Use this line as a guide to draw the rest of the isolines. When the lines become tricky to draw, consider all the alternatives. There may be a better way to draw the analysis. Remember that the data is only a reflection of the actual atmosphere! Adapted from College of DuPage http://weather.cod.edu/labs/isoplething/isoplething.rules.html

Surface temperature Contour the “10s” (0°F, 10°F, 20°F, etc…) Contour every 10 degrees F You could contour every 5° F if you wish more detail, or are focusing on a regional analysis

Surface pressure Contour the “4s” (1000 mb, 1004 mb, 996 mb, etc.) And thus contour every 4 mb Remember the station model: if pressure is listed as “002”, that usually means 1000.2 mb. Pressure of “994” means 999.4 mb.

Dew point temperature Convention not as established. Should try to include the 10s (50°F, 60°F, etc.) Depending on interest, can contour every 10°F, every 5°F, or even every 2°F Every 2°F would only be on a regional analysis Also depending on focus (i.e., severe thunderstorms? Winter precip? Drought?) can omit low or high values Example: start at 45°F and contour every 5°F to 75°F, if focusing on identifying the dryline and thunderstorm possibilities Example: start at 20°F and contour every 5°F to 50°F, if interested in wintry precip

Surface temperature

Sea Level Pressure

Dew point temperature