Deeply Virtual Compton Scattering on the neutron at JLab with CLAS12

Slides:



Advertisements
Similar presentations
NDVCS measurement with BoNuS RTPC M. Osipenko December 2, 2009, CLAS12 Central Detector Collaboration meeting.
Advertisements

INFN of Genova, Pavia and Roma Flavio Gatti, PSI, February 9 th, Timing Counter status Timing Counter status.
Nustar/crystal simulations B. Genolini Crystal: CsI(Tl) (Saint Gobain), wrapped with reflector (VM2000, Tyveck?) Geometry:
Scintillator based muon upgrade / BELLE Super B Factory Workshop In Hawaii Jan 2004, Honolulu, Hawaii 1.Scintillator strip option 2.Geiger photodiodes.
The Transverse detector is made of an array of 256 scintillating fibers coupled to Avalanche PhotoDiodes (APD). The small size of the fibers (5X5mm) results.
Central Neutron Detector March ’11 Update Central Neutron Detector March ’11 Update Daria Sokhan IPN Orsay CLAS 12 GeV Workshop Paris, France – 9 th March.
Report on SiPM Tests SiPM as a alternative photo detector to replace PMT. Qauntify basic characteristics Measure Energy, Timing resolution Develop simulation.
A Reconstruction Algorithm for a RICH detector for CLAS12 Ahmed El Alaoui RICH Workchop, Jefferson Lab, newport News, VA November th 2011.
May 31, 2008 SuperB PID sessionMarko Starič, Ljubljana Marko Starič J. Stefan Institute, Ljubljana Report on hardware tests and MC studies in Ljubljana.
CLAS12 activity at IPNO D2I: Design, realization and test of the Central Neutron Detector J. Bettane, J.L. Cercus, B. Genolini, G. Hull, M. Imre, A. Maroni,
Scintillation hodoscope with SiPM readout for the CLAS detector S. Stepanyan (JLAB) IEEE conference, Dresden, October 21, 2008.
EAS Reconstruction with Cerenkov Photons Shower Simulation Reconstruction Algorithm Toy MC Study Two Detector Configuration Summary M.Z. Wang and C.C.
Electromagnetic Calorimeter for the CLAS12 Forward Detector S. Stepanyan (JLAB) Collaborating institutions: Yerevan Physics Institute (Armenia) James Madison.
Julien Bettane, Giulia Hull, Silvia Niccolai, Daria Sokhan 31/1/2012 Status and commissioning plan for the Central Neutron Detector.
Speculative first look at neutron detection by (n,p) charge exchange in the central detector Dan Watts – University of Edinburgh.
Start Counter Collaboration Meeting September 2004 W. Boeglin FIU.
T. Sugitate / Hiroshima / PHX031 / Nov.01 The Photon Spectrometer for RHIC and beyond PbWO 4 Crystal Density 8.29 g/cm 3 Radiation length 0.89 cm Moliere.
PANDA Anton A. Izotov, Gatchina A.A.Izotov, Gatchina, PANDA Forward TOF Walls. Side TOF walls in dipole Magnet SiPM/PMT187.
S. Niccolai, IPN OrsayCLAS12 Workshop, Genova, 2/27/08 Conseil Scientifique IPN Orsay, 12/11/09 INFN Frascati, INFN Genova, IPN Orsay, LPSC Grenoble SPhN.
TOP counter overview and issues K. Inami (Nagoya university) 2008/7/3-4 2 nd open meeting for proto-collaboration - Overview - Design - Performance - Prototype.
Development of TOP counter for Super B factory K. Inami (Nagoya university) 2007/10/ th International Workshop on Ring Imaging Cherenkov Counters.
PID for super Belle (design consideration) K. Inami (Nagoya-u) - Barrel (TOP counter) - Possible configuration - Geometry - Endcap (Aerogel RICH) - Photo.
Hadron Calorimeter HCAL-J GEp Electron Calorimeter BigCal Hadron Calorimeter 1 G. Franklin, Carnegie Mellon University 10/13/2011.
Apollo Go, NCU Taiwan BES III Luminosity Monitor Apollo Go National Central University, Taiwan September 16, 2002.
Experimental Nuclear Physics Some Recent Activities 1.Development of a detector for low-energy neutrons a. Hardware -- A Novel Design Idea b. Measure the.
SksMinus status Hyperball collaboration meeting 2009/3/11 K. Shirotori.
ECAL PID1 Particle identification in ECAL Yuri Kharlov, Alexander Artamonov IHEP, Protvino CBM collaboration meeting
Magnetized hadronic calorimeter and muon veto for the K +   +  experiment L. DiLella, May 25, 2004 Purpose:  Provide pion – muon separation (muon veto)
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
Aerogel Cherenkov Counters for the ALICE Detector G. Paić Instituto de Ciencias Nucleares UNAM For the ALICE VHMPID group.
Detectors for VEPP-2000 B.Khazin Budker Institute of Nuclear Physics 2 March 2006.
CLAS12 – CND PARAMETERDESIGN VALUE Detector typeBarrel of scintillators Angular coverage40 o to 120 o Number of radial layers3 Number of azimuthal segments48.
Genova/Pavia/Roma Flavio Gatti, PSI, 11 February, Timing Counter: january 2004.
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
GSI 9Feb09 NMI3 – Integrated Infrastructure Initiative for Neutron Scattering and Muon Spectroscopy, Joint Research Activity (JRA8): MUON-S. Contract:
Study of the MPPC for the GLD Calorimeter Readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group Kobe Introduction Performance.
M.Taguchi and T.Nobuhara(Kyoto) HPK MPPC(Multi Pixel Photon Counter) status T2K280m meeting.
Update on Central Neutron Detector for CLAS12 S. Niccolai, IPN Orsay European collaboration: INFN Frascati, INFN Genova, IPN Orsay, LPSC Grenoble CLAS12.
Tracker Neutron Detector: INFN plans CLAS12 Central Detector Meeting - Saclay 2-3 December 2009 Patrizia Rossi for the INFN groups: Genova, Laboratori.
Simulation and reconstruction of CLAS12 Electromagnetic Calorimeter in GSIM12 S. Stepanyan (JLAB), N. Dashyan (YerPhI) CLAS12 Detector workshop, February.
Status update on the Central Neutron Detector J. Bettane, J.L. Cercus, B. Garillon, T. Nguen Trung, S. Niccolai, D. Sokhan Detector goals and design Tests.
1 The Scintillation Tile Hodoscope (SciTil) ● Motivation ● Event timing/ event building/ software trigger ● Conversion detection ● Charged particle TOF.
CLAS12 Particle Identification S. Stepanyan (JLAB) Probing Strangeness in Hard Processes INFN Frascati, October 18 – 21, 2010.
1 SoLID Collaboration Meeting, July 9-10, 2014 Electromagnetic Calorimeters (EC) for SoLID The SoLID EC Working Group SoLID Collaboration Meeting July.
Forward Tagger Calorimeter Prototype tests at Jlab: report CLAS12 Workshop February 22, 2012 A. Celentano.
Prospect of SiPM application to TOF in PANDA
Deeply Virtual Compton Scattering on the neutron at JLab with CLAS12
Forward Tagger Simulations
Neutron detector for the central part of CLAS12
Focusing Aerogel RICH with SiPM Photodetectors
Central detector for CLAS12: CTOF and Neutron detector
KM2A Electron Detector Optimization
The Forward Tagger for CLAS12 a status update
Jin Huang Los Alamos National Lab
K. Sedlak, A. Stoykov, R. Scheuermann
CLAS12 Forward Detector Element PCAL
The neutron counter for the Central Detector of CLAS12
Timing Counter Sept CSN I, Assisi 2004 Giorgio Cecchet.
Comments on Dual Readout Calorimeter
Preparation of the CLAS12 First Experiment Status and Time-Line
for meson spectroscopy
Deng Ziyan Jan 10-12, 2006 BESIII Collaboration Meeting
R&D of MPPC for T2K experiment
A Neutron Counter for the CLAS12 Central Detector
CLAS 12 Status of the test bench Calculation of the time resolution
BESIII TOF Digitization
Status Report on MCP PET Simulation
Trigger operation during 2007 run
CLAS Collaboration Meeting
Performance test of a RICH with time-of-flight information
Presentation transcript:

Deeply Virtual Compton Scattering on the neutron at JLab with CLAS12 INFN Frascati, INFN Genova, IPN Orsay, LPSC Grenoble SPhN Saclay University of Glasgow CLAS12 Central Detector Meeting Saclay, 12/02/09 e’ t (Q2) e gL* x+ξ x-ξ H, H, E, E (x,ξ,t) ~ g p p’ CLAS12 Workshop, Genova, 2/27/08 S. Niccolai, IPN Orsay

nDVCS with CLAS12: kinematics More than 80% of the neutrons have q>40° → Neutron detector in the CD is needed! DVCS/Bethe-Heitler event generator with Fermi motion, Ee = 11 GeV (Grenoble) Physics and CLAS12 acceptance cuts applied: W > 2 GeV2, Q2 >1 GeV2, –t < 1.2 GeV2 5° < qe < 40°, 5° < qg < 40° <pn>~ 0.4 GeV/c CD Detected in forward CLAS Not detected ed→e’ng(p) Detected in FEC, IC PID (n or g?), p, angles to identify the final state pμe + pμn + pμp = pμe′ + pμn′ + pμp′ + pμg In the hypothesis of absence of FSI: pμp = pμp’ → kinematics are complete detecting e’, n (p,q,f), g FSI effects can be estimated measuring eng, epg, edg on deuteron in CLAS12 (same experiment)

CND: constraints & design CTOF Central Tracker limited space available (~10 cm thickness) limited neutron detection efficiency no space for light guides compact readout needed strong magnetic field (~5 T) magnetic field insensitive photodetectors (APDs, SiPMs or Micro-channel plate PMTs) CTOF can also be used for neutron detection Central Tracker can work as a veto for charged particles MC simulations done for: efficiency PID angular resolutions reconstruction algorithms background studies Detector design under study: scintillator barrel

Simulation of the CND Geometry: Simulation done with Gemc (GEANT4) Includes the full CD 4 radial layers (or 3, if MCP-PMTs are used) 30 azimuthal layers (can still be optimized) each bar is a trapezoid (matches CTOF) inner r = 28.5 cm, outer R = 38.1 cm z y x Reconstruction: Good hit: first with Edep > threshold TOF = (t1+t2)/2, with t2(1) = tofGEANT+ tsmear+ (l/2 ± z)/veff tsmear = Gaussian with s= s0/√Edep (MeV) s0 = 200 ps·MeV ½ → σ ~ 130 ps for MIPs β = L/T·c, L = √h2+z2 , h = distance between vertex and hit position, assuming it at mid-layer θ = acos (z/L), z = ½ veff (t1-t2) Birks effect not included (will be added in Gemc) Cut on TOF>5ns to remove events produced in the magnet and rescattering back in the CND

CND: efficiency, PID, resolution for a threshold of 5 MeV and pn = 0.2 - 1 GeV/c Efficiency: Nrec/Ngen Nrec= # events with Edep>Ethr. pn= 0.1 - 1.0 GeV/c q = 50°-90°, f = 0° Layer 1 Layer 2 Layer 3 Layer 4 “Spectator” cut Dp/p ~ 5% Dq ~ 1.5° b distributions (for each layer) for: neutrons with pn = 0.4 GeV/c neutrons with pn = 0.6 GeV/c neutrons with pn = 1 GeV/c photons with E = 1 GeV/c (assuming equal yields for n and g) n/g misidentification for pn ≥ 1 GeV/c

CLAS 12 Recent measurements at Orsay CEA – Orme des Merisiers Dec. 2-3, 2009 B. Genolini, T. Nguyen Trung, J. Pouthas http://ipnweb.in2p3.fr/~detect

Main issues w h l = 60 cm Requested time resolution < 200 ps RMS Plastic scintillator (best ≈ 2.5 ns FWHM) Large number of photoelectrons: > 100 High magnetic field (5T): no PMT SiPM (MPPC, GAPD, etc.) APD MCP PMT 60-cm long scintillator: Important light losses (wrapping, absorption) Spread of the photon time distribution w Plastic scintillator (BC408) h l = 60 cm

The test bench at Orsay Scintillator: 60×3×3 cm^3, BC408 Reference readout PMT (XP20D0) Coincidence scintillators Mobile support Trigger scintillator Test readout: PMT or SiPM Scintillator: 60×3×3 cm^3, BC408 Trigger: the time reference is taken from the thickest scintillator, validated by the coincidence of the two others Mobile support to scan the scintillator Test readout: PMT as the reference, or SiPM (in a box, for shielding) Ref Test Trig

Results σ2test =1/2 (σ2test,trig + σ2test,ref − σ2ref,trig) Thi Nguyen Trung Bernard Genolini S. Pisano J. Pouthas Ref Test σ2test =1/2 (σ2test,trig + σ2test,ref − σ2ref,trig) Trig Test = PMT sTOF < 90 ps nphe ~1600 Single pe Test = 1 SiPM Hamamatsu (MPPC 1x1 mm2) sTOF ~ 1.8 ns rise time ~ 1 ns nphe ~1 Test = 1 SiPM Hamamatsu (MPPC 3x3mm2) rise time ~5 ns (> capacitance) more noise than 1x1 mm2 Test = 1 APD Hamamatsu (10x10 mm2 ) sTOF ~ 1.4 ns high noise, high rise time Test = 1 MCP-PMT Photonis/DEP (two MCPs) sTOF ~ 130 ps tested in B field at Saclay (end of November)

Extruded scint. + WLS fiber Typical signals Extruded scintillator made at Triumph Wavelength shifting fiber (best results with multi cladding): > 10 pe Measurement with a 1×1 m2 MPPC (Hamamatsu SiPM) and a PMT (Photonis XP20D0) Time resolution: 1.4 ns RMS 100 ns PMT averaged signal 20 ns

MCP-PMT Double-stage MCP (Photonis-DEP) Time resolution without magnetic field = 130 ps Test at CEA under magnetic field: not working at 5 T (amplitude ratio = 10-4)

Simulation of the light collection 2 layers Scint. 1 Scint. 2 Simulations with Litrani Pulse shapes Relative light yields Prototype (0 layer) Scint. 1 Scint. 2 3 layers Adjusted on the Prototype measurements Scint. 3 Time resolution along the scintillator length

Issues 1/Can we obtain ~150 ps time resolution give the existing constraints ? (B-field, space, photodetector lifetime,…) ? (3m MCP-PMTs, APDs, SiPMs,…) 2/If not, can we afford to give up on the TOF measurement ? TOF measurement has three purposes: A/ n/g separation B/ pn measurement C/ q measurement Energy deposition profile (1cm2 scintillator trapezoids) ? Preshower ? Pulse shape analysis ? Could measuring only (pe,qe,fe), (pg,qg,fg), (qn,fn) be enough ? Additional segmentation in q 3/Measuring the recoil proton instead ?