Elementary Data Structures CS 105
Elementary Data Structures Stack container of elements that are inserted and removed last-in first-out (LIFO) Queue container of elements that are inserted and removed first-in first-out (FIFO) Deque (double-ended queue) container of elements that allows insertion and removal from either end
Stack Last-in, First-out (LIFO) structure Operations Sample uses push: add element into the stack pop: remove & return topmost element top: return topmost element isEmpty: check if the stack has no elements size: return number of elements in the stack Sample uses “Back” button of a browser, “Undo” operation, function/method calls
Stack Interface public interface Stack { public int size(); public boolean isEmpty(); public void push( Object o ); public Object top() throws EmptyStackException; public Object pop() throws EmptyStackException; } public class EmptyStackException extends RuntimeException
Array Implementation top 3 S ... x z y w public class ArrayStack implements Stack { private int top = -1; private Object S[]; ... } top 3 S ... x z y w
Array Implementation Details An array of objects stores the elements An integer field points to the topmost element Value of top is –1 when the stack is empty A constant indicates the size/capacity of the array Throw a StackFullException when a push is attempted on a full array
ArrayStack class public class ArrayStack implements Stack { public static final int CAPACITY = 1000; private Object S[]; private int top; public ArrayStack() S = new Object[CAPACITY]; top = -1; } public boolean isEmpty() return (top < 0); } …
ArrayStack class continued public class ArrayStack implements Stack { … public int size() { return (top + 1); } public void push(Object obj) throws FullStackException if (size() == CAPACITY) throw new FullStackException(); S[++top] = obj; … public class FullStackException extends RuntimeException { }
ArrayStack class continued public class ArrayStack implements Stack { … public Object top() throws EmptyStackException { if (isEmpty()) throw new EmptyStackException(); return S[top]; } public Object pop() throws EmptyStackException return S[top--]; } …
Garbage collection After a pop() operation, array still contains reference to popped element Succeeding push() operations will override such references but it is not certain whether pushes will occur after the pops Better to set the reference to null so that the object is garbage-collected when no longer in use
Improved pop() method public class ArrayStack implements Stack { … public Object pop() throws EmptyStackException { Object elem; if (isEmpty()) throw new EmptyStackException(); elem = S[top]; S[top--] = null; // dereference S[top] for garbage collection. return elem; } …
Using the Stack Stack s1 = new ArrayStack(); String temp; s1.push( "easy" ); s1.push( "this" ); temp = (String) s1.pop(); System.out.print( temp ); s1.push( "is" ); s1.push( "class" ); while ( !s1.isEmpty() ) { System.out.print( " "+ temp ); } System.out.println(); OK because Strings are Objects Cast object to String
Stack of ints Stack s2 = new ArrayStack(); s2.push( 5 ); s2.push( 2 ); int num = (Integer) s2.pop(); System.out.println( num ); Allowed in Java 1.5 because primitive type values are “auto-boxed” Cast object to Integer type (not int) Note: In previous Java versions, s2.push( new Integer( 2 ) ); num = ( (Integer) s2.pop() ).intValue();
Time Complexity Analysis push() : O(1) pop() : O(1) isEmpty() : O(1) size() : O(1) top(): O(1)
Array Implementation Alternative Make top variable point to next available array position instead of actual topmost element top = 0 when empty top represents size top 4 S ... x z y w
Problems with ArrayStack CAPACITY needs to be specified Consequences stack may fill up (when size() == MAX ) memory is wasted if actual stack consumption is way below maximum Need a more “dynamic” implementation
Linked List Implementation top null y w z A stack as a sequence of nodes
The Node class y public class Node { private Object element; private Node next; public Node( Object e, Node n ) element = e; next = n; } public Object getElement() … public Node getNext() … public void setElement( Object newElem ) … public void setNext( Node newNext ) … y
Linked List Implementation Stack is represented by a Node reference (called top) This reference is null when stack is empty Top refers to the top element only but links in each node keep the elements together An integer field represents the number of elements in the stack
NodeStack class public class NodeStack implements Stack { private Node top; private int size; public NodeStack() top = null; size = 0; } public boolean isEmpty() return (top == null); } …
NodeStack class continued public class NodeStack implements Stack { … public int size() { return size; } public void push( Object obj ) Node v = new Node( obj, top ); top = v; size++; …
Push operation top size 3 null y w z
Push operation top size 3 null x y w z Create node
Push operation top size 4 null x y w z Update top and size
NodeStack class continued public class NodeStack implements Stack { … public Object top() throws EmptyStackException { if ( isEmpty() ) throw new EmptyStackException(); return top.getElement(); } public Object pop() throws EmptyStackException Object temp = top.getElement(); top = top.getNext(); size--; return temp; } …
Pop operation top size 4 null x y w z
Pop operation top size 4 null x y w z temp Get top element
Pop operation top size 3 null x y w z temp Update top and size
Pop operation top size 3 null x y w z temp Node automatically disposed
Pop operation top size 3 null x y w z Return element
Using the NodeStack Stack s2 = new NodeStack(); s2.push( 5 ); int num = (Integer) s2.pop(); System.out.println( num ); Only this line changed
Time Complexity Analysis push() : O(1) pop() : O(1) isEmpty() : O(1) size() : O(1) top(): O(1)
ArrayStack versus NodeStack NodeStack uses only the memory that it needs at any given time NodeStack has no size limit (just the system’s memory) – FullStackException not thrown ArrayStack’s implementation is simpler Which implementation is more efficient?
Managing Multiple Implementations Note that we now have two implementations of a Stack: public class ArrayStack implements Stack { … } public class NodeStack implements Stack Consider what code needs to be changed if we shift between implementations It would be preferable if the code that uses the stack does not need to be updated
A StackFactory Class Use a separate class that produces Stack objects public class StackFactory { public static Stack createStack() return new ArrayStack(); // or return new NodeStack(); } Advantage: if you want to change your implementation, you just need to change StackFactory you don’t need to change all calls to new ArrayStack in all your code!
Using a StackFactory Stack s2 = StackFactory.createStack(); s2.push( 5 ); s2.push( 2 ); s2.push( 3 ); int num = (Integer) s2.pop(); System.out.println( num ); this line need not be changed even if the stack implementation changes
Queue First-in, First-out (FIFO) structure Operations Sample use enqueue: insert element at rear dequeue: remove & return front element front: return front element isEmpty: check if the queue has no elements size: return number of elements in the queue Sample use handling requests and reservations
The Queue Interface public interface Queue { public int size(); public boolean isEmpty(); public void enqueue( Object o ); public Object front() throws EmptyQueueException; public Object dequeue() throws EmptyQueueException; } public class EmptyQueueException extends RuntimeException
Array Implementation Possibilities On enqueue, place element in the next available slot; on dequeue, remove element at position 0 and move all other elements to the left Dequeue takes O(n) time Have integer pointers to front and rear, increment rear on enqueue, increment front on dequeue, so that both operations are O(1)
Array Implementation of a Queue An Object array and two integers front: index of first element in queue rear: index of first FREE element in queue rear front 4 ...
ArrayQueue public class ArrayQueue implements Queue { public static final int CAPACITY = 1000; private Object s[]; private int front, rear; public ArrayQueue() s = new Object[CAPACITY]; front = rear = 0; } ...
isEmpty and Enqueue public class ArrayQueue implements Queue { ... { ... public boolean isEmpty() { return ( front == rear ); } public void enqueue( Object o ) throws FullQueueException if ( rear == CAPACITY ) throw new FullQueueException(); s[rear++] = o; ... public class FullQueueException extends RuntimeException { }
Enqueue operation front rear 3 ...
Enqueue operation front rear 4 ... Enqueued object
Dequeue public class ArrayQueue implements Queue { ... public Object dequeue() throws EmptyQueueException if ( isEmpty() ) throw new EmptyQueueException(); return s[front++]; } …
Dequeue operation front rear 4 ...
Dequeue operation front rear 1 4 ... Return this object
Dequeue operation front rear 1 4 ... Remember to set reference in array to null front rear 1 4 ... null
Dequeue with Garbage Collection public class ArrayQueue implements Queue { ... public Object dequeue() throws EmptyQueueException { if ( isEmpty() ) throw new EmptyQueueException(); Object data = s[front]; s[front] = null; front++; return data; }
Circular Array Suppose many enqueue operations followed by many dequeue operations Result: rear approaches CAPACITY but the queue is not really full Solution: Circular Array allow rear (and front) to “wrap around” the array (if rear = CAPACITY-1, incrementing rear means resetting it to 0)
Circular Array, continued When is the array full? Simple answer: when (rear == front) Problem: this is the same condition as empty Solution: Reserve a slot full: when ( (rear+1) % CAPACITY == front) (one free slot left) empty: when ( rear == front ) Note: “wastes” a slot alternative: have a boolean field called hasElements full: when ( hasElements && (rear == front)) But not really better hasElements takes up extra space too Also, need to take care of hasElements in enqueue and dequeue
Revised Enqueue public class ArrayQueue implements Queue { ... public void enqueue( Object o ) throws FullQueueException if ((rear+1) % CAPACITY == front) throw new FullQueueException(); s[rear] = o; rear = (rear + 1) % CAPACITY; }
Revised Dequeue public class ArrayQueue implements Queue { ... { ... public Object dequeue() throws EmptyQueueException { if ( isEmpty() ) throw new EmptyQueueException(); Object data = s[front]; s[front] = null; front = (front + 1) % CAPACITY; return data; } …
Completing the Dequeue class public class ArrayQueue implements Queue { ... public int size() { return (CAPACITY + rear – front) % CAPACITY; } … public Object front() throws EmptyQueueException if ( isEmpty() ) throw new EmptyQueueException(); return s[front];
Time Complexity Analysis enqueue() : O(1) dequeue() : O(1) isEmpty() : O(1) size() : O(1) front(): O(1)
Dynamic Implementation Queue is represented by a linked sequence of nodes Two node references refer to front and rear element, respectively Use a size field to monitor number of elements
Linked List Implementation public class NodeQueue implements Queue { private Node front; private Node rear; private int size; … } front rear null
Enqueue front rear null null
Dequeue front rear null return this object
NodeQueue considerations Exercise: complete the NodeQueue class Note that the queue is empty when both front and rear are null Need to watch out for special cases Enqueue from an empty queue Dequeue from a single-element queue
Deque Data structure that allows insertion and deletion from either end of structure Operations insertFirst, insertLast: add element removeFirst, removeLast: remove element first: return first element last: return last element isEmpty: check if the deque has no elements size: return number of elements in the deque
Deque Interface public interface Deque { public int size(); public boolean isEmpty(); public void insertFirst( Object o ); public void insertLast( Object o ); public Object first() throws EmptyDequeException; public Object last() throws EmptyDequeException; public Object removeFirst() throws EmptyDequeException; public Object removeLast() throws EmptyDequeException; } public class EmptyDequeException extends RuntimeException
Array Implementation of a Deque Circular array implementation Integer pointers to first and last element Insertion/removal operations insertFirst: decrement first pointer removeFirst: increment first pointer insertLast: increment last pointer removeFirst: decrement last pointer Decide whether pointers should point to actual element or next available space Impacts on full/empty conditions
Dynamic Implementation of a Deque Linked List implementation first last null
Deque using a Singly Linked List insertFirst, removeFirst, insertLast are O(1) operations removeLast is an O(n) operation Why? Need to update last pointer to point to second-to-the-last element How can we make all operations O(1)? Have a link to next and previous nodes
Doubly Linked List first last null null
The DLNode class public class DLNode { private Object element; private DLNode next, prev; public Node( Object e, DLNode n, DLNode p ) element = e; next = n; prev = p; } public Object getElement() … public DLNode getNext() … public DLNode getPrev() … public void setElement( Object newElem ) … public void setNext( DLNode newNext ) … public void setPrev( DLNode newPrev ) …
Deque using a Doubly Linked List insertFirst, removeFirst, insertLast, removeLast are O(1) operations Need to update next and prev pointers in DLNode Empty and single-element cases Insertion from the empty case (both pointers are null) and removal from a single-element case (both point to the single element) need to be handled Or, make pointers point to dummy nodes (also called sentinels), so that insertion and removal need not worry about the special cases size field: as in singly-linked implementation, storing size makes isEmpty() and size() easier