Jari Koskinen, Sami Franssila

Slides:



Advertisements
Similar presentations
General Characteristics of Gas Detectors
Advertisements

Introduction to Plasma-Surface Interactions Lecture 6 Divertors.
Alex.A. Samarian and Brian.W. James School of Physics, University of Sydney, NSW 2006, Australia Sheath edge location The charge of dust particles in sheath.
GM COUNTER.
PIII for Hydrogen Storage
PHYSICS 103: Lecture 20 Blackbody Radiation Light Bulbs Agenda for Today:
AA and Atomic Fluorescence Spectroscopy Chapter 9
Atomic Emission Spectroscopy
427 PHC.  Atomic emission spectroscopy (AES) is based upon emission of electromagnetic radiation by atoms.
1 Introduction to Plasma Immersion Ion Implantation Technologies Emmanuel Wirth.
The removal of surface atoms due to energetic particle bombardment
L.B. Begrambekov Plasma Physics Department, Moscow Engineering and Physics Institute, Moscow, Russia Peculiarities, Sources and Driving Forces of.
Mass Spectroscopy Mass Spectrometry ä Most useful tool for molecular structure determination if you can get it into gas phase ä Molecular weight of.
1 Particle-In-Cell Monte Carlo simulations of a radiation driven plasma Marc van der Velden, Wouter Brok, Vadim Banine, Joost van der Mullen, Gerrit Kroesen.
MSE-630 Dopant Diffusion Topics: Doping methods Resistivity and Resistivity/square Dopant Diffusion Calculations -Gaussian solutions -Error function solutions.
VORPAL for Simulating RF Breakdown Kevin Paul VORPAL is a massively-parallel, fully electromagnetic particle- in-cell (PIC) code, originally.
Physical Vapor Deposition
Thin Film Deposition Prof. Dr. Ir. Djoko Hartanto MSc
S. Kugler: Lectures on Amorhous Semiconductors 1 Preparation.
Radiation therapy is based on the exposure of malign tumor cells to significant but well localized doses of radiation to destroy the tumor cells. The.
Dry Etching, General Principles Dr. Marc Madou, Fall 2012 Class 7.
M.H.Nemati Sabanci University
ECE/ChE 4752: Microelectronics Processing Laboratory
Solar Cell conductive grid and back contact
Atomic Emission Spectroscopy
PC4250 Secondary Ion Mass Spectrometry (SIMS). What is SIMS? SIMS is a surface analysis technique used to characterize the surface and sub-surface region.
Centre de Toulouse Radiation interaction with matter 1.
Vacuum science.
Why plasma processing? (1) UCLA Accurate etching of fine features.
1 Introduction to Atomic Spectroscopy Atomic Absorption Spectroscopy Lecture 12.
Semion System Retarding Field Ion Energy Analyzer “
Sputter deposition.
Ionization Detectors Basic operation
CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority Beam Species Measurements on the MAST NBI system Brendan Crowley Thanks to.
Accelerator Physics, JU, First Semester, (Saed Dababneh). 1 Electron pick-up. ~1/E What about fission fragments????? Bragg curve stochastic energy.
Machine Tools And Devices For Special Technologies Ion beam machining Slovak University of Technology Faculty of Material Science and Technology in Trnava.
-Plasma can be produced when a laser ionizes gas molecules in a medium -Normally, ordinary gases are transparent to electromagnetic radiation. Why then.
Secondary Ion Mass Spectrometry A look at SIMS and Surface Analysis.
X-ray absorption spectroscopy (XAS)
An Estimation of Critical Electron Density at Just Starting Breakdown in Gases Mase. H Professor Emeritus of Ibaraki University.
Large Area Plasma Processing System (LAPPS) R. F. Fernsler, W. M. Manheimer, R. A. Meger, D. P. Murphy, D. Leonhardt, R. E. Pechacek, S. G. Walton and.
Mar 24 th, 2016 Inorganic Material Chemistry. Gas phase physical deposition 1.Sputtering deposition 2.Evaporation 3.Plasma deposition.
Section 5: Thin Film Deposition part 1 : sputtering and evaporation
Jari Koskinen 1 Thin Film Technology Lecture 2 Vacuum Surface Engineering Jari Koskinen 2014.
Thin Films Technology 2014 Lecture 3: Physical Vapor Deposition PVD
DC Sputtering Disadvantage #1 Low secondary electron yield
Thin Film Deposition Processes
(Thermal Evaporation)
© 1997, Angus Rockett Section I Evaporation.
Jari Koskinen, Sami Franssila
Thin film depositions: the Ion Plating technique
Seok-geun Lee, Young-hwa An, Y.S. Hwang
Lecture 6 Metallization.
DOE Plasma Science Center Control of Plasma Kinetics
Electron and Ion Currents
PVD & CVD Process Mr. Sonaji V. Gayakwad Asst. professor
FEBIAD ion source development efficiency improvement
Mass Spectroscopy. Mass Spectroscopy Mass Spectrometry Most useful tool for molecular structure determination if you can get it into gas phase Molecular.
Chapter 8 Ion Implantation
Chapter 5 Plasma and Ion Beam Processing of Thin Films
In Corial PECVD SYSTEMS
Future Thin Film Deposition Efforts at FNAL
1.6 Magnetron Sputtering Perpendicular Electric Magnetic Fields.
Ionization detectors ∆
Four States of Matter Chapter 4 – Section 1.
NUCLEAR REACTOR MATERIALS
1.6 Glow Discharges and Plasma
Semiconductor Detectors
Introduction To Plasma Etch
Lecture №7. 1. The condition of self discharge. 2. Paschen curves. 3. Time of discharge. 4. Gas breakdown in a nonuniform electric field. 5. The emergence.
Presentation transcript:

Jari Koskinen, Sami Franssila jari.koskinen@aalto.fi 1.9.2016 XXX Thin Film Technology Doctoral course Plasma and ion bombardment (8 credits) Jari Koskinen, Sami Franssila jari.koskinen@aalto.fi 1.9.2016

Contents plasma systems 2nd hour ion beam surface interactions Plasma basic physics, parameters, ionization types of plasma generation of plasma emission of ions, plasma systems 2nd hour ion beam surface interactions collisions, cascades range sputtering simulations mixing

Plasma Plasma Gas of positive ions, electrons and (mostly) neutral atoms Etymology: Greek: “moulded” - plasma fills the chamber Charge neutrality ne = ni Colliding electrons ionise atoms Ions and electrons accelerate in electric field Collisions excite atoms De-excitation creates photons – visible light

Important plasma parameters Oscillations Debye length mean free path ionization crossection

Hannu Koskinen Univ of Helsinki

hot&dense << 1 cold&sparce Hannu Koskinen Univ of Helsinki

Different types of plasmas Thin film plasma processes Wikipedia

n = density of atoms (and ions) Total collistion cross section: Hannu Koskinen Univ of Helsinki n = density of atoms (and ions) Total collistion cross section: σtotal = σexitation + σion + σattachment+ σother Bunshah, Handbook of Deposition Technologies for Films and Coatings Noyes

Electron temperature Bunshah, Handbook of Deposition Technologies for Films and Coatings Noyes

Electron and ion temperature Bunshah, Handbook of Deposition Technologies for Films and Coatings Noyes

Plasma sheath e.g. for practical sputter plasma ds ≈ some tens x λD Bunshah, Handbook of Deposition Technologies for Films and Coatings Noyes

Cold cathode discharge Bunshah, Handbook of Deposition Technologies for Films and Coatings Noyes

Types of disharge Typical mode in sputter deposition Mahan, Physical Vapor Deposition of Thin Films, Wiley

Luminous regions in DC plasma ions neutralize secondary electrons have slowed for max ionization electrons have accelerated sufficiently for ionization Mahan, Physical Vapor Deposition of Thin Films, Wiley

Practical sputtering plasma -1 Argon pressure 1 torr atom density (n) 3 x 1016 cm-3 ni=ne 1010 cm-3 ionization fraction 3 x 10-7 (weakly ionized plasma) ion temperature Ti 300K electron temperature Te 23,000K

Densities and temperatures in process plasmas seconday electrons thru cathode sheath ions and neutrals back scattered form cathode ions accelerated to cathode electrons in main plasma dissociation products: ions&neutrals ions in main plasma process gas atoms&neutrals

Practical sputtering plasma -2 VDC 1000V Vp 8V Current density at cathode 2 mA/cm2 Cathode sheath L 2 mm mean free path λ 50 µm Mahan, Physical Vapor Deposition of Thin Films, Wiley

Circuit models of DC plasma discharge Mahan, Physical Vapor Deposition of Thin Films, Wiley

Ion energy at cathode Ar+(hot) + Ar(cold)  Ar(hot)+Ar+(cold) σ = 2.5 x 10-15 cm-3 Mahan, Physical Vapor Deposition of Thin Films, Wiley

AC plasma methods

AC plasma Bunshah, Handbook of Deposition Technologies for Films and Coatings Noyes

Forming of self-bias in AC discharge Mahan, Physical Vapor Deposition of Thin Films, Wiley

Self bias at electrodes n n= 4 (sometimes 2) No simple model. One argument: “ impedance of smaller are electrode is higher -> higher potential difference” Sivu 24

Circuit models of RF plasma discharge Mahan, Physical Vapor Deposition of Thin Films, Wiley

RF Plasma glow discharge http://www.spectruma.de

Arc plasma

Arc discharge deposition Arc discharge video

Arc disharge – cathode spot www.shm-cz.cz/files/schema01.jpg

Arc discharge process arc current concentrated into filaments – arcs intense electron emission intense ion emission due to electron current ( atoms/electrons – 1/100) ionization of atoms – formation of plasma flow of ions to cathode – intense sputtering of atoms 106 - 108 A/m2 overlapping thermal spikes materials is melted and sublimated in cathode spots cathode spots move randomly or could be steered by using magnets electons ionize vapor and create more electrons – increase of current ions accelerate due to potential difference in plasma due to multiple collisions with fast electrons macro particles (up to 10 µm diam.I are formed Timko, Nordlund simulations http://prb.aps.org/supplemental/PRB/v81/i18/e184109

Filtered arc

HIPIMS

HIPIMS W. Sproul, AEPSE 2009 Tutorial “Pulsed Plasma Diffusion”

HIPIMS W. Sproul, AEPSE 2009 Tutorial

HIPIMS W. Sproul, AEPSE 2009 Tutorial

HIPIMS Cr W. Sproul, AEPSE 2009 Tutorial

HIPIMS W. Sproul, AEPSE 2009 Tutorial

Fluxes of ions in HIPIMS J. Vac. Sci. Technol. A, Vol. 28, No. 4, Jul/Aug 2010 Sivu 38

HIPIMS denser films W. Sproul, AEPSE 2009 Tutorial

Reactive sputtering W. Sproul, AEPSE 2009 Tutorial

Reactive sputtering W. Sproul, AEPSE 2009 Tutorial

Reactive sputtering W. Sproul, AEPSE 2009 Tutorial

Reactive sputtering W. Sproul, AEPSE 2009 Tutorial

Reactive sputtering W. Sproul, AEPSE 2009 Tutorial

Reactive sputtering W. Sproul, AEPSE 2009 Tutorial

Ion solid interarctions

Energetic ion surface interactions

Secondary electrons

Desorption, cleaning

Sputtering

Collision cascade, thermal spike K. Nordlund

doping, compounds

Range of ions Sivu 53

Range Sivu 54

Collision cascades Sivu 55

Range and stopping range: enegy loss: stopping: Sivu 56

Reduced stopping Sivu 57

10 keV Si recoil atom in silicon K. Nordlund

1 keV C+ in glass, Range

Range and damage 30 keV Ne+ in ZrO2

Kai Nordlund Univ of Helsinki Simulations http://beam.acclab.helsinki.fi/~knordlun/anims.html

Sputtering Source of atoms and ions Cleaning: Removing lose atoms, impurities, oxides Sivu 62

Sputter constant low ion energies < 1 keV Sivu 63

Sputtering yield

Sputter yield angle dependence

Sputter yield angle dependence and energy distribution

Sputter yield angle dependence and energy distribution

Energy distribution of sputteres atoms Usb/2 1/E2 Sivu 68

Preferential sputtering Sivu 69

TRIM and SRIM simulations http://www.srim.org/ Sivu 70