Rotational Spectroscopy and Search for Methoxymethanol in the ISM

Slides:



Advertisements
Similar presentations
Fourier transform microwave spectrum of isobutyl mercaptan Kanagawa Institute of Technology 1 and The Graduate University for Advanced Studies 2 Yugo Tanaka,
Advertisements

Orion-KL EVLA spectrum Karl Menten, Dec. 28, 2010 Received spectra from R. Perley on Dec. 23 and 28, 2010 Frequency range – MHz Subtracted.
+ TERAHERTZ SPECROSCOPY OF METHYLAMINE R. A. Motiyenko, L. Margulès Laboratoire PhLAM, Université Lille 1, France V.V. Ilyushin, E.A. Alekseev Insitute.
High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
The microwave spectrum of partially deuterated species of dimethyl ether D. Lauvergnat, a L. Margulès, b R. A. Motyenko, b J.-C. Guillemin, c and L. H.
DDS-BASED FAST SCAN SPECTROMETER Eugen A. Alekseev Institute of Radio Astronomy of NASU, Kharkov, Ukraine Roman A. Motiyenko and Laurent Margulès Laboratoire.
Microwave spectroscopy of 2-furancarboxylic acid Roman A. Motiyenko, Manuel Goubet, Laurent Margulès, Georges Wlodarczak PhLAM Laboratory, University Lille.
Submillimeter-wave Spectroscopy of 13 C 1 -Methyl formate [H 13 COOCH 3 ] in the Ground State Atsuko Maeda, Ivan Medvedev, Eric Herbst, Frank C. De Lucia,
Submillimeter-wave Spectroscopy of [HCOOCH 3 ] and [H 13 COOCH 3 ] in the Torsional Excited States Atsuko Maeda, Frank C. De Lucia, and Eric Herbst Department.
WH04 NUMERICAL AND EXPERIMENTAL ASPECTS OF DATA ACQUISITION AND PROCESSING IN APPLICATION TO TEMPERATURE RESOLVED 3-D SUB-MILLIMETER SPECTROSCOPY FOR ASTROPHYSICS.
Rovibronic Analysis of the State of the NO 3 Radical Henry Tran, Terrance J. Codd, Dmitry Melnik, Mourad Roudjane, and Terry A. Miller Laser Spectroscopy.
OSU International Symposium on Molecular Spectroscopy meeting, June 19-23, in Columbus, Ohio, USA Microwave spectra of 3-amino-2-propenenitrile (H 2 N-CH=CH-CN),
First high resolution analysis of the 5 3 band of nitrogen dioxide (NO 2 ) near 1.3 µm Didier Mondelain 1, Agnès Perrin 2, Samir Kassi 1 & Alain Campargue.
Interaction of the hyperfine coupling and the internal rotation in methylformate M. TUDORIE, D. JEGOUSO, G. SEDES, T. R. HUET, Laboratoire de Physique.
11 The THz spectrum of GlycolAldehyde M. Goubet, T.R. Huet, I. Haykal, L. Margulès PhLAM, CNRS – Université de Lille 1 O. Pirali, P. Roy AILES beamline,
Columbus, June , 2005 Stark Effect in X 2 Y 4 Molecules: Application to Ethylene M. ROTGER, W. RABALLAND, V. BOUDON, and M. LOËTE Laboratoire de.
Millimeter Wave Spectrum of Iso-Propanol A. MAEDA, I. MEDVEDEV, E. HERBST and F. C. DE LUCIA Department of Physics, The Ohio State University.
Molecular Spectroscopy Symposium June 2011 TERAHERTZ SPECTROSCOPY OF HIGH K METHANOL TRANSITIONS John C. Pearson, Shanshan Yu, Harshal Gupta,
Friday, June 21, th OSU SYMPOSIUM MOLECULAR SPECTROSCOPY FB06: Cuisset & al Gas phase rovibrational spectroscopy of DMSO, Part II: « Towards a THz.
Rotational spectroscopy of ethylamine into the THz Zbigniew Kisiel, Adam Kraśnicki Institute of Physics, Polish Academy of Sciences Ivan R. Medvedev, Christopher.
Rotational spectroscopy of two telluric compounds : vinyl- and ethyl-tellurols R.A. MOTIYENKO, L. MARGULES, M. GOUBET Laboratoire PhLAM, CNRS UMR 8523,
66th OSU International symposium on molecular spectroscopy
A LABORATORY AND THEORETICAL INVESTIGATION OF THE SILICON SULFUR MOLECULES H 2 SiS AND Si 2 S. MICHAEL C. MCCARTHY 1, PATRICK THADDEUS 1, HARSHAL GUPTA.
Spectral Line Surveys with the CSO Susanna L. Widicus Weaver, Department of Chemistry, Emory University Matthew Sumner, Frank Rice, Jonas Zmuidzinas, Department.
The Microwave Spectrum of Monodeuterated Acetamide CH 2 DC(=O)NH 2 I. A. Konov, a L. H. Coudert, b C. Gutle, b T. R. Huet, c L. Margulès, c R. A. Motiyenko,
3-D SUBMILLIMETER SPECTROSCOPY FOR ASTROPHYSICS AND SPECTRAL ASSIGNMENT SARA FORTMAN, CHRISTOPHER NEESE, IVAN R. MEDVEDEV, FRANK C. DE LUCIA, Department.
HIGH RESOLUTION SPECTROSCOPY OF THE TWO LOWEST VIBRATIONAL STATES OF QUINOLINE C 9 H 7 N O. PIRALI, Z. KISIEL, M. GOUBET, S. GRUET, M.-A. MARTIN-DRUMEL,
+ MILLIMETER-WAVE SPECTROSCOPY OF ETHYLMERCURY HYDRIDE Manuel Goubet, Roman A. Motiyenko, Laurent Margulès Laboratoire PhLAM, Université Lille 1 Jean-Claude.
Conformational Flexibility in Hydrated Sugars: The Glycolaldehyde-Water Complex Juan-Ramon Aviles-Moreno, Jean Demaison and Thérèse R. Huet Laboratoire.
1 The rotational spectrum of 13 CH 3 NH 2 up to 1 THz Roman A. Motiyenko, Laurent Margulès PhLAM, Université Lille 1 Vadim Ilyushin Institute of Radio.
Molecular Spectroscopy Symposium June 2013 Identification and Assignment of the First Excited Torsional State of CH 2 DOH Within the o 2, e.
1 The extended spectroscopic database on formamide: parent, 13 C and deuterated species up to 1 THz A.S. Kutsenko Institute of radio astronomy of NASU,
A. Barbe, M.-R. De Backer-Barilly, Vl.G. Tyuterev Analysis of CW-CRDS spectra of 16 O 3 : 6000 to 6200 cm -1 spectral range Groupe de Spectrométrie Moléculaire.
Rotational Spectra Of Cyclopropylmethyl Germane And Cyclopropylmethyl Silane: Dipole Moment And Barrier To Methyl Group Rotation Rebecca A. Peebles, Sean.
Torsional Splitting in the Rotational Spectrum from 8 to 650 GHz of the Ground State of 1,1-Difluoroacetone L. Margulès, R. A. Motiyenko, Université de.
Spectroscopy of the ground, first and second excited torsional states of acetaldehyde from 0.05 to 1.6 THz. Ivan Smirnov a, Eugene Alekseev a, Vadim Ilyushin.
FAST SCAN SUBMILLIMETER SPECTROSCOPIC TECHNIQUE (FASSST). IVAN R. MEDVEDEV, BRENDA P. WINNEWISSER, MANFRED WINNEWISSER, FRANK C. DE LUCIA, DOUGLAS T. PETKIE,
An Experimental Approach to the Prediction of Complete Millimeter and Submillimeter Spectra at Astrophysical Temperatures Ivan Medvedev and Frank C. De.
Additional Measurements and Analyses of H 2 17 O and H 2 18 O June 22-25, 2015 ISMS John. C. Pearson, Shanshan Yu, Adam Daly Jet Propulsion Laboratory,
Millimeter-wave Rotational Spectrum of Deuterated Nitric Acid Rebecca A.H. Butler, Camren Coplan, Department of Physics, Pittsburg State University Doug.
TJ02 3-D SUBMILLIMETER SPECTROSCOPY OF ASTRONOMICAL `WEEDS‘ - EXPERIMENTAL AND THEORETICAL ASPECTS OF DATA PROCESSING AND CATALOGING –> TJ03 Ivan R. Medvedev,
Rotational transitions in the and vibrational states of cis-HCOOH 7 9 Oleg I. Baskakov Department of Quantum Radiophysics, Kharkov National University.
Jun 18th rd International Symposium on Molecular Spectroscopy Microwave spectroscopy o f trans-ethyl methyl ether in the torsionally excited state.
Analysis of the rotation-torsion spectrum of CH 2 DOH within the e 0, e 1, and o 1 torsional levels L. H. Coudert, a John C. Pearson, b Shanshan Yu, b.
MILLIMETRE-WAVE SPECTRUM OF ISOTOPOLOGUES OF ETHANOL FOR RADIO-ASTRONOMY Adam Walters, IRAP, Université de Toulouse, UPS-OMP-CNRS, France. Mirko Schäfer,
MILLIMETRE-WAVE SPECTRUM OF ANTI-13C1 AND 13C2 ISOTOPOLOGUES OF ETHANOL AND APPLICATIONS TO RADIO ASTRONOMY AURELIA BOUCHEZ, ADAM WALTERS, SANDRINE BOTTINELLI,
Rotational Spectroscopy of the Lowest Energy Conformer of 2-Cyanobutane and Search for it in Sagittarius B2(N2) H. S. P. Müller, N. Wehres, O. Zingsheim,
Microwave and infrared spectra of urethane
MICROWAVE AND FIR SPECTROSCOPY OF DIMETHYLSULFIDE IN THE GROUND, FIRST AND SECOND EXCITED TORSIONAL STATES V. Ilyushin1, I. Armieieva1, O. Dorovskaya1,
HIGH RESOLUTION SPECTROSCOPY OF THE CARBON CAGE ADAMANTANE C10H16
V. Ilyushin1, I. Armieieva1, O. Zakharenko2, H. S. P. Müller2, F
THE TORSIONAL FUNDAMENTAL BAND AND ROTATIONAL SPECTRA UP TO 940 GHZ OF THE GROUND, FIRST AND SECOND EXCITED TORSIONAL STATES OF ACETONE V.V. Ilyushin1,
THE MILLIMETER-WAVE SPECTRUM OF VINYL ACETATE
Chirped Pulse Microwave Spectroscopy on Methyl Butanoate
An Analysis of the Rotation Spectrum of Acetonitrile (CH3CN) in Excited Vibrational States Christopher F. Neese, James McMillian, Sarah Fortman, Frank.
THE MILLIMETER-WAVE SPECTRUM OF METHACROLEIN
Microwave spectra of 1- and 2-bromobutane
Analysis of the Rotationally Resolved Spectra to the Degenerate (
Methylstyrenes – Microwave Spectroscopy
THE STRUCTURE OF PHENYLGLYCINOL
Fourier transform microwave spectra of n-butanol and isobutanol
A. Jabri, I. Kleiner, L. Margulès, R. Motyenko, J-C. Guillemin, E. A
Analysis of torsional splitting in the ν8 band of propane near 870
A. M. Daly, B. J. Drouin, J. C. Pearson, K. Sung, L. R. Brown
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
The torsional spectrum of doubly deuterated methanol CHD2OH
The Rotational Spectrum and Conformational Structures of Methyl Valerate LAM NGUYEN Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA)
COMPREHENSIVE ANALYSIS OF INTERSTELLAR
Holger S. P. Müller, J. C. Pearson, S. Brünken, S. Yu,
Presentation transcript:

Rotational Spectroscopy and Search for Methoxymethanol in the ISM Roman A. Motiyenko, Laurent Margulès Laboratoire PhLAM, UMR 8523 CNRS - Université Lille 1, Villeneuve d’Ascq, France Jean-Claude Guillemin Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS - ENSCR, Rennes, France Didier Despois Laboratoire d’Astrophysique de Bordeaux, Université de Bordeaux, Floirac, France. Arnaud Belloche Max-Planck-Institut für Radioastronomie, Bonn, Germany 06/27/2016 – 60 years of Molecules, Motion and Matrix Elements (NIST)

The Lille THz spectrometer 10 – 18 GHz Millitech AMC (x4) : 50 – 75 GHz VDI AMC-10 (x6) : 75 – 110 GHz VDI AMC-35x (x12) : 118 – 170 GHz x2 x3 x5 x2x3 x3x3 x3x3 f, GHz

The fast-scan box Inspired by Medvedev et al. Optics Letters 35 (2010) 1533 – 1535 Agilent E8257D Frequency switching time min: 25 ms/point Frequency switching time typical: 35 ms/point Time to cover 150 – 1500 GHz: ~ 180h Agilent E8257D + Fast-scan box Frequency switching time: 50 µs/point Frequency switching time typical: 4 ms/point Time to cover 150 – 1500 GHz: ~ 23h ~ 3 decrease in S/N ratio Synthesized fast-scan – at each point the frequency is determined with the accuracy of the reference clock (frequency standard); line measurement accuracy – the same as for « slow » scan The principle – up-conversion of direct digital synthesizer into RF RF synthesizer provides frequency switching with large step once per scan DDS synthesizer provides fast frequency switching with small frequency step Typically, a scan consists to acquire 1000 - 2000 points

The fast-scan box No signal-to-noise difference between old and new setup when the acqusition time is the same

Garrod, Widicus Weaver & Herbst, ApJ, 682 : 283-302, 2008 Methoxymthanol - Astrophysical interest Both CH3O and CH2OH may be formed from methanol photolysis in ices Methoxymethanol (CH3OCH2OH) is predicted to form from reactions of CH3O and CH2OH in ices CH3O detected in the ISM (Cernicharo et al., ApJL 759 : L43, 2012) CH2OH is not yet detected Garrod, Widicus Weaver & Herbst, ApJ, 682 : 283-302, 2008

Stable conformations MP2/aug-cc-pVQZ Gg+ Gg- Tg E (kJ/mol) 8.5 10.9 8.5 10.9 A (MHz) 17255.37 17193.46 32695.06 B (MHz) 5639.84 5685.01 4383.01 C (MHz) 4867.86 4813.62 4102.33 µa (D) 0.22 0.77 1.48 µb (D) 0.08 1.22 0.97 µc (D) 0.13 2.0 1.26

Stable conformations Gauche-gauche Gauche-gauche’ Trans-gauche 0.51 E (kJ/mol) 8.5 10.9 Boltz.@300 K 1 0.033 0.012 µa (D) 0.22 0.77 1.48 Normalized intensities without taking the partition function into account: Ia 0.51 0.20 0.29 I ~ µ2×exp(-ħω/kT)

Experiment Sample synthesized by J.-C. Guillemin Methoxymethanol unstable under room temperature Spectra measured in flow mode Pyrex absorption cell CH3OH and H2CO as major impurities THz source Absorbtion cell Detector to diffusion + rotary pump Sample at ~ 250 K At room temperature In this study: ∆t = 1 ms/point due to weak intensities Each spectrum averaged 8 times – effective acquisition time 8 ms/point Frequency range: 150 – 470 MHz

CH3OH and H2CO as major impurities Analysis 235 – 265 GHz, ~660000 points, recorded in 92 minutes CH3OH and H2CO as major impurities

Analysis Gg: B+C = 10.506 GHz Tg: B+C = 8.485 GHz

Internal rotation Gg Gg’ V3 = 517 cm-1 V3 = 607 cm-1 B3LYP/6-311++(3df, 2pd) 250,25 – 240,24 A 251,25 – 241,24 E Gg Gg’ V3 = 517 cm-1 V3 = 607 cm-1 249,15 – 239,14 A 249,16 – 239,15 A 249,15 – 239,14 E 249,16 – 239,15 E No symmetry: XIAM code used for fitting and predicting the spectra XIAM allows fitting of structural parameters (angles ε and δ)

Internal rotation XIAM fit Theory Gg Theory Gg’ A (MHz) 17237.9491(12) 17255.37 17193.46 B (MHz) 5567.81516(29) 5639.84 5685.01 C (MHz) 4813.04187(33) 4867.86 4813.62 V3 (cm-1) 545.93(39) 517 607 δ (rad) 0.90252(40) 0.932 0.942 ε (rad) 0.3819(13) 0.397 0.359 +13 parameters rms (MHz) 0.04 N lines 1189 J max, Ka max 48, 14 δ – the angle between the internal rotation axis and the principal axis z ε – the angle between the principal axis x and the projection of the internal rotation axis onto xy-plane

Internal rotation Strong µa lines Theory Weak µb lines Weak µb lines µa (D) 0.22 µb (D) 0.08 µc (D) 0.13 µa (D) 0.77 µb (D) 1.22 µc (D) 2.0 Gg Gg’ Experiment

OH tunneling in Tg conformation Splittings ~40 MHz Theory Experiment

OH tunneling in Tg conformation J+12,J – J2,J-1 J’’ 19 20 21 22 23 24 25 26 27 28 29

OH tunneling in Tg conformation J+12,J-1 – J2,J-2 J’’ 19 20 21 22 23 24 25 26 27 28 29

Hindered internal rotation of the hydroxyl group Tunneling between the two equivalent Tg configurations split each rotational level into two components. The analysis of rotational spectrum is complicated by Coriolis-type coupling between the tunneling substates 00,0 DE = 90.6 GHz (3.02 cm-1) 0+ 0- selection rules: µa, µb: +  + & -  - µc: +  -

The Hamiltonian and the global fit Pickett’s Reduced Axis Method (RAM, Pickett H.M. J. Chem. Phys. 1972, 56, 1715. ) formalism was used The Hamiltonian in the matrix form: Where: Hrot – Watson A-reduction Hamiltonian in the Ir coordinate representation H∆ – the rotational dependence of the energy difference, it allows fitting a single set of rotational constants for both 0+ and 0- states HI – Coriolis interaction terms and their centrifugal distortion corrections

The Hamiltonian and the global fit The ∆E and F terms in the Hamiltonian are usually highly correlated In the absence of v = 0  1 transitions one of the terms should be fixed Usually it is better to fix ∆E and to let F to vary We performed a series of fits with ∆E fixed in the range 60 – 200 GHz to find a global rms minimum global rms minimum rms as a function of (11) parameter (410001) as a function of (11) parameter preliminary fit: Parameter Experiment Theory MP2/aug-cc-pVTZ A (MHz) 32327.73(38) 32695.1 B (MHz) 4350.33185(267) 4383.01 C (MHz) 4070.97384(267) 4102.33 +8 parameters ΔE (MHz) 90679.9( 32) Fbc -0.1905(264) Fac 36.8131(165) N lines 175 rms (MHz) 0.044 quest for µc transitions to decorrelate ∆E term

Assignment of Gg’ conformation Experim. Gg Theory Gg Theory Gg’ Scaled Gg’ A (MHz) 17237.949 17255.37 17193.46 17176.11 B (MHz) 5567.815 5639.84 5685.01 5612.44 C (MHz) 4813.041 4867.86 4813.62 4759.46 J+10,J+1 – J0,J

Assignment of Gg’ conformation B3LYP/6-311++(3df, 2pd)

Results The most stable Gg conformation of methoxymethanol assigned and analyzed Accurate predictions of transition frequencies for the v=0 state of Gg conformation in the frequency range up to 500 GHz and for J up to 50 Gg’ and Tg conformations have pure spectroscopic interest Tg conformation assigned, its spectrum exhibits splittings due to OH tunneling Gg’ conformation tentatively assigned A. Belloche: methoxymethanol is not detected in ALMA Sgr B2 (N2) survey due to high line blending. Its abundance upper limit is at least 4 times lower in comparison with methyl formate (to be corrected by vibrational partition function) Hays & Widicus Weaver, JPCA 117: 7142-7148, 2013 Acknowledgements Action sur Projets de l'INSU : "Physique et Chimie du Milieu Interstellaire" ANR-13-BS05-0008-02 IMOLABS