Matthias Bucher, Angelos Antonopoulos Compact modeling of advanced bulk CMOS using EKV3 – linearity, RF and noise performance trends Matthias Bucher, Angelos Antonopoulos Technical University of Crete bucher@electronics.tuc.gr
Outline Physics-based, charge-based compact MOSFET model – EKV3 model DC to RF modeling IV, CV, Y-parameters Linearity RF figures of merit – evolution with technology Thermal noise Conclusions
EKV3 scalable model for high frequency Scalability vs. channel length, number of fingers, bias Gate- and substrate- parasitics scale with multi-finger layout Layout-dependent stress effects Non quasi-static model (NQS) channel segmentation consistent AC/transient Thermal noise Induced gate & substrate noise Velocity saturation, CLM Carrier heating
EKV3 configurations, channel-segmentation for NQS Simple model – only internal accounting for (S,D) series resistance Simple model with external series resistance Simple RF model with gate and substrate resistance Full RF model with substrate resistivity network Full RF & NQS (channel segmentation) model.
Channel-segmentation for NQS effects Multifinger device NMOS Lg = 2 um, saturation (110 nm CMOS) gm gds NQS NQS NQS --- QS and ___ NQS EKV3 model, 45 MHz - 20 GHz
Layout-dependent parasitics
Multi-finger RF MOSFETs Source=Bulk Source=Bulk 150 μm pitch Width of finger G G G G G Gate Drain G G G G G Source=Bulk Drain Layout of RF multi-finger MOSFET Number of fingers – NF Finger Width – Wf Gate Length – L Ground-Signal-Ground (GSG) RF Pads 2 port configuration Open-Short de-embedding structures
Layout dependence: STI stress in multi-finger RF MOSFETs VDS=50m, 0.5, 1V – EKV3 □ meas. NMOS, L=180nm, Wf=2μm Stress effects due to shallow-trench isolation (STI) Threshold voltage VT vs. NF Max. drain current ID / NF vs. NF
Edge conduction effect MI Edge conduction effect dominant in Weak – Moderate Inversion Leakage dramatically increased Gm/ID is strongly affected – MI EKV3 only available CM to cover this effect L=2um, W=3um and VDS=1.2V
Static characteristics NMOS – EKV3 model VDS=50m, 0.5, 1V VGS=0.4, 0.6, 0.8, 1, 1.2V – EKV3 □ meas. NMOS, L=180nm, Wf=2μm, NF=4 ID-VG, gm-VG, gm.UT/ID – ID ID-VD, gds-VD
Static characteristics PMOS – EKV3 model -VDS=50m, 0.5, 1V -VGS=0.4, 0.6, 0.8, 1, 1.2V – EKV3 □ meas. PMOS, L=180nm, Wf=2μm, NF=4 ID-VG, gm-VG, gm.UT/ID – ID ID-VD, gds-VD
I-V NMOS; WF = 2um; LF = 65nm; NF = 40 ID , gm vs. VG (saturation) ID , gm vs. VG (linear) ID , gds vs. VD gm/ID vs. ID Measurements / EKV3 / BSIM4
I-V PMOS; WF = 2um; LF = 65nm; NF = 40 ID , gm vs. VG (saturation) ID , gm vs. VG (linear) ID , gds vs. VD gm/ID vs. ID Measurements / EKV3
Capacitance-voltage characteristics, EKV3 model Long/short (L=10um, 90nm) gate and inversion capacitance, NMOS, PMOS. M. Bucher e.a. Int. J. RF and Microwave CAE, 2008
Approximate Y-Parameters MOS Transistor Modeling for RF Integrated Circuit Design © C. Enz, March, 2002 Approximate Y-Parameters Assuming wRgCgg << 1 To calculate the Y-parameters, we will neglect the substrate resistances Since Rg can be made small, we can assume that wRgCgg is much smaller than unity for the frequency range to be considered Cgg is the total capacitance seen at the gate The Y-parameters are then given by It is always useful and instructive to have analytic expressions for the Y-parameters They can be used for direct extraction For example Cgd can be directly extracted from the imaginary part of Y12 Cgg can be extracted from the imaginary part of Y11 and Rg can be extracted from the real part of Y11 These values can then be used as starting points for a more detailed extraction These formula have been verified experimentally on a n-channel MOS transistor with 10 fingers, 12mm finger width and 0.36mm gate length Can be used for direct extraction MSM 2002 - WCM Tutorial
Y-parameters vs. frequency – NMOS VDS=0.3, VGS=0.3, 0.6, 1.2V – EKV3 □ meas. Real & Imaginary 2-port Y-parameters up to 30GHz NMOS, L=180nm, Wf=2μm, NF=9 A. Bazigos e.a. Physica Status Solidi C, 2008
Y parameters vs. frequency – PMOS – EKV3 □ meas. VDS=-1.2V, -VGS=0.3, 0.6, 1.2V Real & Imaginary 2-port Y-parameters up to 30GHz L=180nm, Wf=2μm, NF=9 A. Bazigos e.a. Physica Status Solidi C, 2008
Scalability with channel length – NMOS – EKV3 □ meas. Y parameters for NMOS L=110 nm, 180 nm, 250 nm, 450 nm, 1 um, 2 um W=5 um, NF=10 VG=0.6V, VD=0.5V M. Bucher e.a. Int. J. RF and Microwave CAE, 2008
Scalability with channel length – PMOS – EKV3 □ meas. Y parameters for PMOS L=110 nm, 180 nm, 250 nm, 450 nm, 1 um, 2um W=5 um, NF=10 VG=0.6V, VD=0.5V M. Bucher e.a. Int. J. RF and Microwave CAE, 2008
Y-parameters NMOS; WF = 2um; LF = 65nm; NF = 40 VGS=0.8V; VDS={0.4, 0.6, 0.8}V; VSB=0V Y11 Y12 Y21 Y22 real imaginary Measurements / EKV3 / BSIM4
Y-parameters PMOS, WF = 2um, LF = 65nm; NF = 40 |VGS|=0.8V;|VDS|={0.4,0.6,0.8}V;VSB=0V Y11 Y12 Y21 Y22 real imaginary Measurements / EKV3
Linearity – small signal MI MI Gm, Gm2, Gm3, PIP3, VIP3 vs. ID/Ispec “Sweet Spot” is moving to lower levels of inversion with lower L!
Linearity – small signal MI MI Evolution of P1dB, PIP3, vs. ID/Ispec for technology nodes to 22nm “Sweet Spot” is moving to lower levels of inversion with lower L! Good news: better linearity closer to VT.
Linearity – large signal (load-pull) Pout & Gain vs. Pin ZL = 50 Ohm, Pin = -20…5 dBm Pout Contours VGS = 0.8 V, VDS = 0.8 V , VSB=0 V,Pin = 5dBm NMOS: L =65nm, W=2um, NF=10, Freq=5.8GHz
General RF parameters
High-frequency parameters @5GHz vs. ID – NMOS – EKV3 □ meas. VDS=0.5, 1.2, 1.3V |H21|, U, FT, Fmax, Re(Y21), Re(Y22) vs. ID L=180nm, Wf=2μm, NF=9 A. Bazigos e.a. Physica Status Solidi C, 2008
High-frequency parameters @5GHz vs. ID – PMOS – EKV3 □ meas. -VDS=0.5, 1.2, 1.3V |H21|, U, FT, Fmax, Re(Y21), Re(Y22) vs. ID L=180nm, Wf=2μm, NF=9
High-frequency parameters NMOS vs. VG RG=30 Ω CGD=7.5 fF CGS=7.5 fF RB=103 Ω CJD=11 fF NMOS: L =65nm, W=2um, NF=10, F = 5 GHz, VGS = [0.2, …1.2] V, VDS = [0.2, …1.2] V
High-frequency parameters NMOS vs. VG NMOS: L =65nm, W=2um, NF=10, F = 5 GHz, VGS = [0.2, …1.2] V, VDS = [0.2, …1.2] V
FT and Fmax evolution with technology
GM /ID·FT, GM2/ID and [GM /GDS·GM /ID FT] The different FoMs behave in a similar way Maximum in moderate inversion! Trend towards lower levels (within moderate inversion)
GM /ID·FT and [GM /GDS·GM /ID FT] evolution
Thermal noise in MOSTs – EKV3 model
Thermal noise in MOSTs – EKV3 model
Short channel effects on thermal noise – EKV3 model
Thermal noise parameters
Noise in 2-port devices
Noise parameters vs. frequency – EKV3 model
Noise parameters vs. bias – EKV3 model
Thermal noise vs. bias & channel length – EKV3 model
Induced gate noise – EKV3 model
Thermal noise parameters – EKV3 model
Conclusions EKV3: analog/RF IC design-oriented, charge-based, compact model Model covers all aspects from DC to RF Fully scalable with L, W, NF, bias, f, technology Small/large signal including NQS Noise Simple model structure & parameter extraction RF model validations Vs. measurements in 180 – 110 – 90 – 65 nm CMOS. Vs. TCAD to 22nm CMOS. Implementations in: Spectre, ELDO, Smash, HSPICE (underway)
Conclusions Relation to advanced analog/RF IC design Trend towards moderate inversion: optimum Gm/ID. FT, best noise/gain/linearity performance Optimal RF CMOS (for LV-LP RFIC) performance shifted to lower levels of inversion (near-threshold) with CMOS technology approaching 22nm. EKV3 model incorporates all necessary short-channel effects for correct RF Noise at mm-waves.
EKV3 publications EKV3 model, RFCMOS papers A. Antonopoulos, M. Bucher, K. Papathanasiou, N. Mavredakis, N. Makris, R. K. Sharma, P. Sakalas, M. Schroter, Small-Signal and Thermal Noise Compact Modelling at High Frequencies, IEEE Trans. Electron Devices, Vol. 60, N° 11, pp. 3726-3733, Nov. 2013. A. Antonopoulos, M. Bucher, K. Papathanasiou, N. Makris, N. Mavredakis, R. K. Sharma, P. Sakalas, M. Schroter, Modeling of High Frequency Noise of Silicon CMOS Transistors for RFIC Design, International Journal of Numerical Modelling, 2014. A. Antonopoulos, M. Bucher, K. Papathanasiou, N. Makris, R. K. Sharma, P. Sakalas, M. Schroter, CMOS RF Noise, Scaling, and Compact Modeling for RFIC Design, Proc. IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Seattle, Washington, June 2-4, 2013. S. Yoshitomi, A. Bazigos, M. Bucher, The EKV3 Model Parameter Extraction and Characterization of 90nm RF-CMOS Technology, 14th Int. Conf. on Mixed Design of Integrated Circuits and Systems (MIXDES), pp. 74-79, Ciechocinek, Poland, June 21-23, 2007. M. Bucher, A. Bazigos, S. Yoshitomi, N. Itoh, A Scalable Advanced RF IC Design-Oriented MOSFET Model, Int. Journal of RF and Microwave Computer Aided Engineering, Vol. 18, N° 4, pp. 314-325, 2008. M. Bucher, A. Bazigos, An Efficient Channel Segmentation Approach for a Large-Signal NQS MOSFET Model, Solid-State Electronics, Vol. 52, N° 2, pp. 275-281, Feb. 2008.
EKV3 publications EKV3 model, general papers K. Papathanasiou, N. Makris, A. Antonopoulos, M. Bucher, Moderate inversion: analogue and RF benchmarking of the EKV3 compact model, 29th Int. Conf. on Microelectronics (MIEL), Belgrade, Serbia, May 12-15, 2014. C. Enz, E. Vittoz, Charge-based MOS Transistor Modeling, The EKV model for low- power and RF IC design, Wiley, 2006. J.-M. Sallese, M. Bucher, F. Krummenacher, P. Fazan, Inversion Charge Linearization in MOSFET Modeling and Rigorous Derivation of the EKV Compact Model, Solid-State Electronics, Vol. 47, N° 4, pp. 677-683, Apr. 2003
Thank you for your attention Acknowledgments: Contact: bucher@electronics.tuc.gr Electonic and Computer Engineering Technical University of Crete Chania 73100, Greece