Matthias Bucher, Angelos Antonopoulos

Slides:



Advertisements
Similar presentations
R. van Langevelde, A.J. Scholten Philips Research, The Netherlands
Advertisements

Institut für Theoretische Elektrotechnik Dipl.-Ing. Jan Bremer Large Signal Modeling of Inversion-Mode MOS Varactors in VCOs MOS-AK Meeting April.
Why study SOI MOSFETs nonlinearities ?
MOSFET Modeling for RF Circuit Design Kenneth Yau MASc Candidate Department of Electrical and Computer Engineering University of Toronto Toronto, ON M54.
Comparative Analysis of the RF and Noise Performance of Bulk and Single-Gate Ultra-thin SOI MOSFETs by Numerical Simulation M.Alessandrini, S.Eminente,
HW (Also, use google scholar to find one or two well cited papers on symmetric models of MOSFET, and quickly study them.)
1 High Frequency Model of Sub-100nm High-k RF CMOS ○M. Nakagawa 1, J.Song 1, Y. Nara 2, M. Yasuhira 2 *, F. Ohtsuka 2, T. Arikado 2 **, K. Nakamura 2,
HO #3: ELEN Review MOS TransistorsPage 1S. Saha Long Channel MOS Transistors The theory developed for MOS capacitor (HO #2) can be directly extended.
Rakshith Venkatesh 14/27/2009. What is an RF Low Noise Amplifier? The low-noise amplifier (LNA) is a special type of amplifier used in the receiver side.
Veljko Radeka, Sergio Rescia, Gianluigi De Geronimo Instrumentation Division, Brookhaven National Laboratory, Upton, NY Induced Gate Noise in Charge Detection.
CMOS VLSI Design 4th Ed. EEL 6167: VLSI Design Wujie Wen, Assistant Professor Department of ECE Lecture 3A: CMOs Transistor Theory Slides adapted from.
Analog Integrated Circuits Lecture 1: Introduction and MOS Physics ELC 601 – Fall 2013 Dr. Ahmed Nader Dr. Mohamed M. Aboudina
The Devices: MOS Transistor
Chapter 6 The Field Effect Transistor
Field Effect Transistors
MOS Field-Effect Transistors (MOSFETs)
M. Manghisoni, L. Ratti, V. Re, V. Speziali, G. Traversi
Recall Last Lecture Common collector Voltage gain and Current gain
Field-Effect Transistors Based on Chapter 11 of the textbook
Chapter 2 Field-Effect Transistors (FETs) SJTU Zhou Lingling.
Metal Semiconductor Field Effect Transistors
Lecture 21 OUTLINE The MOSFET (cont’d) P-channel MOSFET
ENEE 303 4th Discussion.
Lecture 20 OUTLINE The MOSFET (cont’d) Qualitative theory
Device Structure & Simulation
3: CMOS Transistor Theory
6.3.3 Short Channel Effects When the channel length is small (less than 1m), high field effect must be considered. For Si, a better approximation of field-dependent.
EE141 Chapter 3 VLSI Design The Devices March 28, 2003.
CMOS Devices PN junctions and diodes NMOS and PMOS transistors
MOS Field-Effect Transistors (MOSFETs)
CMOS Devices PN junctions and diodes NMOS and PMOS transistors
CMOS Devices PN junctions and diodes NMOS and PMOS transistors
VLSI System Design Lect. 2.1 CMOS Transistor Theory
ترانزیستور MOSFET دکتر سعید شیری فصل چهارم از:
An Illustration of 0.1µm CMOS layout design on PC
Lecture 16 ANNOUNCEMENTS OUTLINE MOS capacitor (cont’d)
Lecture 19 OUTLINE The MOSFET: Structure and operation
Lecture 13: Part I: MOS Small-Signal Models
منبع: & کتابMICROELECTRONIC CIRCUITS 5/e Sedra/Smith
Reading: Finish Chapter 17,
Transistors (MOSFETs)
Qualitative Discussion of MOS Transistors
Chapter 1 and 2 review CMOS Devices and models Fabrication process
Basic electrical properties
aUniversità degli Studi di Pavia Dipartimento di Elettronica
Chapter 1 and 2 review CMOS Devices and models Fabrication process
FIELD EFFECT TRANSISTOR
MOSFETs - An Introduction
Lecture 21 OUTLINE The MOSFET (cont’d) P-channel MOSFET
Lecture 21 OUTLINE The MOSFET (cont’d) P-channel MOSFET
The MOS Transistors, n-well
EMT 182 Analog Electronics I
Lecture 21 OUTLINE The MOSFET (cont’d) P-channel MOSFET
Lecture 3: CMOS Transistor Theory
Channel Length Modulation
Lecture 20 OUTLINE The MOSFET (cont’d) Qualitative theory
CP-406 VLSI System Design CMOS Transistor Theory
EXAMPLE 7.1 BJECTIVE Determine the total bias current on an IC due to subthreshold current. Assume there are 107 n-channel transistors on a single chip,
Power and Heat Power Power dissipation in CMOS logic arises from the following sources: Dynamic power due to switching current from charging and discharging.
Lecture 3: CMOS Transistor Theory
Lecture 20 OUTLINE The MOSFET (cont’d)
Parameter Extraction of Advanced MOSFET Model
Lecture 20 OUTLINE The MOSFET (cont’d)
Device Engineering Team
Lecture 3: CMOS Transistor Theory
Gm/ID Design Approach.
Analysis of Single Stage Amplifiers
DC and RF Modeling of CMOS Schottky Diodes
Hangzhou Dianzi University
Dr. Hari Kishore Kakarla ECE
Presentation transcript:

Matthias Bucher, Angelos Antonopoulos Compact modeling of advanced bulk CMOS using EKV3 – linearity, RF and noise performance trends Matthias Bucher, Angelos Antonopoulos Technical University of Crete bucher@electronics.tuc.gr

Outline Physics-based, charge-based compact MOSFET model – EKV3 model DC to RF modeling IV, CV, Y-parameters Linearity RF figures of merit – evolution with technology Thermal noise Conclusions

EKV3 scalable model for high frequency Scalability vs. channel length, number of fingers, bias Gate- and substrate- parasitics scale with multi-finger layout Layout-dependent stress effects Non quasi-static model (NQS) channel segmentation consistent AC/transient Thermal noise Induced gate & substrate noise Velocity saturation, CLM Carrier heating

EKV3 configurations, channel-segmentation for NQS Simple model – only internal accounting for (S,D) series resistance Simple model with external series resistance Simple RF model with gate and substrate resistance Full RF model with substrate resistivity network Full RF & NQS (channel segmentation) model.

Channel-segmentation for NQS effects Multifinger device NMOS Lg = 2 um, saturation (110 nm CMOS) gm gds NQS NQS NQS --- QS and ___ NQS EKV3 model, 45 MHz - 20 GHz

Layout-dependent parasitics

Multi-finger RF MOSFETs Source=Bulk Source=Bulk 150 μm pitch Width of finger G G G G G Gate Drain G G G G G Source=Bulk Drain Layout of RF multi-finger MOSFET Number of fingers – NF Finger Width – Wf Gate Length – L Ground-Signal-Ground (GSG) RF Pads 2 port configuration Open-Short de-embedding structures

Layout dependence: STI stress in multi-finger RF MOSFETs VDS=50m, 0.5, 1V – EKV3 □ meas. NMOS, L=180nm, Wf=2μm Stress effects due to shallow-trench isolation (STI) Threshold voltage VT vs. NF Max. drain current ID / NF vs. NF

Edge conduction effect MI Edge conduction effect dominant in Weak – Moderate Inversion Leakage dramatically increased Gm/ID is strongly affected – MI EKV3 only available CM to cover this effect L=2um, W=3um and VDS=1.2V

Static characteristics NMOS – EKV3 model VDS=50m, 0.5, 1V VGS=0.4, 0.6, 0.8, 1, 1.2V – EKV3 □ meas. NMOS, L=180nm, Wf=2μm, NF=4 ID-VG, gm-VG, gm.UT/ID – ID ID-VD, gds-VD

Static characteristics PMOS – EKV3 model -VDS=50m, 0.5, 1V -VGS=0.4, 0.6, 0.8, 1, 1.2V – EKV3 □ meas. PMOS, L=180nm, Wf=2μm, NF=4 ID-VG, gm-VG, gm.UT/ID – ID ID-VD, gds-VD

I-V NMOS; WF = 2um; LF = 65nm; NF = 40 ID , gm vs. VG (saturation) ID , gm vs. VG (linear) ID , gds vs. VD gm/ID vs. ID Measurements / EKV3 / BSIM4

I-V PMOS; WF = 2um; LF = 65nm; NF = 40 ID , gm vs. VG (saturation) ID , gm vs. VG (linear) ID , gds vs. VD gm/ID vs. ID Measurements / EKV3

Capacitance-voltage characteristics, EKV3 model Long/short (L=10um, 90nm) gate and inversion capacitance, NMOS, PMOS. M. Bucher e.a. Int. J. RF and Microwave CAE, 2008

Approximate Y-Parameters MOS Transistor Modeling for RF Integrated Circuit Design © C. Enz, March, 2002 Approximate Y-Parameters Assuming wRgCgg << 1 To calculate the Y-parameters, we will neglect the substrate resistances Since Rg can be made small, we can assume that wRgCgg is much smaller than unity for the frequency range to be considered Cgg is the total capacitance seen at the gate The Y-parameters are then given by It is always useful and instructive to have analytic expressions for the Y-parameters They can be used for direct extraction For example Cgd can be directly extracted from the imaginary part of Y12 Cgg can be extracted from the imaginary part of Y11 and Rg can be extracted from the real part of Y11 These values can then be used as starting points for a more detailed extraction These formula have been verified experimentally on a n-channel MOS transistor with 10 fingers, 12mm finger width and 0.36mm gate length Can be used for direct extraction MSM 2002 - WCM Tutorial

Y-parameters vs. frequency – NMOS VDS=0.3, VGS=0.3, 0.6, 1.2V – EKV3 □ meas. Real & Imaginary 2-port Y-parameters up to 30GHz NMOS, L=180nm, Wf=2μm, NF=9 A. Bazigos e.a. Physica Status Solidi C, 2008

Y parameters vs. frequency – PMOS – EKV3 □ meas. VDS=-1.2V, -VGS=0.3, 0.6, 1.2V Real & Imaginary 2-port Y-parameters up to 30GHz L=180nm, Wf=2μm, NF=9 A. Bazigos e.a. Physica Status Solidi C, 2008

Scalability with channel length – NMOS – EKV3 □ meas. Y parameters for NMOS L=110 nm, 180 nm, 250 nm, 450 nm, 1 um, 2 um W=5 um, NF=10 VG=0.6V, VD=0.5V M. Bucher e.a. Int. J. RF and Microwave CAE, 2008

Scalability with channel length – PMOS – EKV3 □ meas. Y parameters for PMOS L=110 nm, 180 nm, 250 nm, 450 nm, 1 um, 2um W=5 um, NF=10 VG=0.6V, VD=0.5V M. Bucher e.a. Int. J. RF and Microwave CAE, 2008

Y-parameters NMOS; WF = 2um; LF = 65nm; NF = 40 VGS=0.8V; VDS={0.4, 0.6, 0.8}V; VSB=0V Y11 Y12 Y21 Y22 real imaginary Measurements / EKV3 / BSIM4

Y-parameters PMOS, WF = 2um, LF = 65nm; NF = 40 |VGS|=0.8V;|VDS|={0.4,0.6,0.8}V;VSB=0V Y11 Y12 Y21 Y22 real imaginary Measurements / EKV3

Linearity – small signal MI MI Gm, Gm2, Gm3, PIP3, VIP3 vs. ID/Ispec “Sweet Spot” is moving to lower levels of inversion with lower L!

Linearity – small signal MI MI Evolution of P1dB, PIP3, vs. ID/Ispec for technology nodes to 22nm “Sweet Spot” is moving to lower levels of inversion with lower L! Good news: better linearity closer to VT.

Linearity – large signal (load-pull) Pout & Gain vs. Pin ZL = 50 Ohm, Pin = -20…5 dBm Pout Contours VGS = 0.8 V, VDS = 0.8 V , VSB=0 V,Pin = 5dBm NMOS: L =65nm, W=2um, NF=10, Freq=5.8GHz

General RF parameters

High-frequency parameters @5GHz vs. ID – NMOS – EKV3 □ meas. VDS=0.5, 1.2, 1.3V |H21|, U, FT, Fmax, Re(Y21), Re(Y22) vs. ID L=180nm, Wf=2μm, NF=9 A. Bazigos e.a. Physica Status Solidi C, 2008

High-frequency parameters @5GHz vs. ID – PMOS – EKV3 □ meas. -VDS=0.5, 1.2, 1.3V |H21|, U, FT, Fmax, Re(Y21), Re(Y22) vs. ID L=180nm, Wf=2μm, NF=9

High-frequency parameters NMOS vs. VG RG=30 Ω CGD=7.5 fF CGS=7.5 fF RB=103 Ω CJD=11 fF NMOS: L =65nm, W=2um, NF=10, F = 5 GHz, VGS = [0.2, …1.2] V, VDS = [0.2, …1.2] V

High-frequency parameters NMOS vs. VG NMOS: L =65nm, W=2um, NF=10, F = 5 GHz, VGS = [0.2, …1.2] V, VDS = [0.2, …1.2] V

FT and Fmax evolution with technology

GM /ID·FT, GM2/ID and [GM /GDS·GM /ID FT] The different FoMs behave in a similar way Maximum in moderate inversion! Trend towards lower levels (within moderate inversion)

GM /ID·FT and [GM /GDS·GM /ID FT] evolution

Thermal noise in MOSTs – EKV3 model

Thermal noise in MOSTs – EKV3 model

Short channel effects on thermal noise – EKV3 model

Thermal noise parameters

Noise in 2-port devices

Noise parameters vs. frequency – EKV3 model

Noise parameters vs. bias – EKV3 model

Thermal noise vs. bias & channel length – EKV3 model

Induced gate noise – EKV3 model

Thermal noise parameters – EKV3 model

Conclusions EKV3: analog/RF IC design-oriented, charge-based, compact model Model covers all aspects from DC to RF Fully scalable with L, W, NF, bias, f, technology Small/large signal including NQS Noise Simple model structure & parameter extraction RF model validations Vs. measurements in 180 – 110 – 90 – 65 nm CMOS. Vs. TCAD to 22nm CMOS. Implementations in: Spectre, ELDO, Smash, HSPICE (underway)

Conclusions Relation to advanced analog/RF IC design Trend towards moderate inversion: optimum Gm/ID. FT, best noise/gain/linearity performance Optimal RF CMOS (for LV-LP RFIC) performance shifted to lower levels of inversion (near-threshold) with CMOS technology approaching 22nm. EKV3 model incorporates all necessary short-channel effects for correct RF Noise at mm-waves.

EKV3 publications EKV3 model, RFCMOS papers A. Antonopoulos, M. Bucher, K. Papathanasiou, N. Mavredakis, N. Makris, R. K. Sharma, P. Sakalas, M. Schroter, Small-Signal and Thermal Noise Compact Modelling at High Frequencies, IEEE Trans. Electron Devices, Vol. 60, N° 11, pp. 3726-3733, Nov. 2013. A. Antonopoulos, M. Bucher, K. Papathanasiou, N. Makris, N. Mavredakis, R. K. Sharma, P. Sakalas, M. Schroter, Modeling of High Frequency Noise of Silicon CMOS Transistors for RFIC Design, International Journal of Numerical Modelling, 2014. A. Antonopoulos, M. Bucher, K. Papathanasiou, N. Makris, R. K. Sharma, P. Sakalas, M. Schroter, CMOS RF Noise, Scaling, and Compact Modeling for RFIC Design, Proc. IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Seattle, Washington, June 2-4, 2013. S. Yoshitomi, A. Bazigos, M. Bucher, The EKV3 Model Parameter Extraction and Characterization of 90nm RF-CMOS Technology, 14th Int. Conf. on Mixed Design of Integrated Circuits and Systems (MIXDES), pp. 74-79, Ciechocinek, Poland, June 21-23, 2007. M. Bucher, A. Bazigos, S. Yoshitomi, N. Itoh, A Scalable Advanced RF IC Design-Oriented MOSFET Model, Int. Journal of RF and Microwave Computer Aided Engineering, Vol. 18, N° 4, pp. 314-325, 2008. M. Bucher, A. Bazigos, An Efficient Channel Segmentation Approach for a Large-Signal NQS MOSFET Model, Solid-State Electronics, Vol. 52, N° 2, pp. 275-281, Feb. 2008.

EKV3 publications EKV3 model, general papers K. Papathanasiou, N. Makris, A. Antonopoulos, M. Bucher, Moderate inversion: analogue and RF benchmarking of the EKV3 compact model, 29th Int. Conf. on Microelectronics (MIEL), Belgrade, Serbia, May 12-15, 2014. C. Enz, E. Vittoz, Charge-based MOS Transistor Modeling, The EKV model for low- power and RF IC design, Wiley, 2006. J.-M. Sallese, M. Bucher, F. Krummenacher, P. Fazan, Inversion Charge Linearization in MOSFET Modeling and Rigorous Derivation of the EKV Compact Model, Solid-State Electronics, Vol. 47, N° 4, pp. 677-683, Apr. 2003

Thank you for your attention Acknowledgments: Contact: bucher@electronics.tuc.gr Electonic and Computer Engineering Technical University of Crete Chania 73100, Greece