Chapter 8 - Interval Estimation

Slides:



Advertisements
Similar presentations
Chapter 8b Sample size for an interval estimate of a population mean.
Advertisements

1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Chapter 8 Interval Estimation Population Mean:  Known Population Mean:  Known Population Mean:  Unknown Population Mean:  Unknown n Determining the.
Chapter 8 Estimating Single Population Parameters
Statistics Interval Estimation.
Interval Estimation Interval estimation of a population mean: Large Sample case Interval estimation of a population mean: Small sample case.
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 7-1 Chapter 7 Confidence Interval Estimation Statistics for Managers.
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc. Chap 8-1 Chapter 8 Confidence Interval Estimation Basic Business Statistics 10 th Edition.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 7-1 Introduction to Statistics: Chapter 8 Estimation.
1 1 Slide © 2003 South-Western /Thomson Learning™ Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Statistics for Managers Using Microsoft® Excel 7th Edition
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 8-1 Chapter 8 Confidence Interval Estimation Business Statistics, A First Course.
Statistics for Managers Using Microsoft® Excel 7th Edition
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 7-1 Chapter 7 Confidence Interval Estimation Statistics for Managers.
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 7-1 Chapter 7 Confidence Interval Estimation Statistics for Managers.
1 1 Slide Interval Estimation Chapter 8 BA Slide A point estimator cannot be expected to provide the exact value of the population parameter.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 7-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter.
Confidence Interval Estimation
1 1 Slide © 2006 Thomson/South-Western Chapter 8 Interval Estimation Population Mean:  Known Population Mean:  Known Population Mean:  Unknown Population.
Chapter 8 - Interval Estimation
Econ 3790: Business and Economics Statistics Instructor: Yogesh Uppal
1 1 Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University © 2002 South-Western /Thomson Learning.
1 1 Slide © 2009 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
© 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license.
Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc. Chap 8-1 Chapter 8 Confidence Interval Estimation Basic Business Statistics 11 th Edition.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
1 1 Slide STATISTICS FOR BUSINESS AND ECONOMICS Seventh Edition AndersonSweeneyWilliams Slides Prepared by John Loucks © 1999 ITP/South-Western College.
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc. Chap 8-1 Chapter 8 Confidence Interval Estimation Basic Business Statistics 11 th Edition.
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide Chapter 8 Interval Estimation n Interval Estimation of a Population Mean: Large-Sample Case Large-Sample Case n Interval Estimation of a Population.
1 1 Slide © 2003 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
[ ]  Chapter 8 Interval Estimation n Interval Estimation of a Population Mean: Large-Sample Case Large-Sample.
Statistics for Managers Using Microsoft Excel, 5e © 2008 Pearson Prentice-Hall, Inc.Chap 8-1 Statistics for Managers Using Microsoft® Excel 5th Edition.
Interval Estimation  Interval Estimation of a Population Mean: Large-Sample Case  Interval Estimation of a Population Mean: Small-Sample Case  Determining.
1 Estimation From Sample Data Chapter 08. Chapter 8 - Learning Objectives Explain the difference between a point and an interval estimate. Construct and.
1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach.
Chap 7-1 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A Course In Business Statistics 4 th Edition Chapter 7 Estimating Population Values.
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc. Chap 8-1 Confidence Interval Estimation.
Chap 7-1 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A Course In Business Statistics 4 th Edition Chapter 7 Estimating Population Values.
1 1 Slide © 2007 Thomson South-Western. All Rights Reserved Chapter 8 Interval Estimation Population Mean:  Known Population Mean:  Known Population.
Statistics for Managers Using Microsoft Excel, 5e © 2008 Pearson Prentice-Hall, Inc.Chap 8-1 Statistics for Managers Using Microsoft® Excel 5th Edition.
© 2002 Prentice-Hall, Inc.Chap 8-1 Basic Business Statistics (8 th Edition) Chapter 8 Confidence Interval Estimation.
Class 5 Estimating  Confidence Intervals. Estimation of  Imagine that we do not know what  is, so we would like to estimate it. In order to get a point.
Sampling and Confidence Interval How can it be that mathematics, being after all a product of human thought independent of experience, is so admirably.
1 Chapter 8 Interval Estimation. 2 Chapter Outline  Population Mean: Known  Population Mean: Unknown  Population Proportion.
Interval Estimate of a Population Proportion z  /2 is the z value providing an area of  /2 in the upper tail of the standard normal distribution and.
Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc. Chap 8-1 Chapter 8 Confidence Interval Estimation Business Statistics: A First Course 5 th Edition.
Chapter 8 Confidence Interval Estimation Statistics For Managers 5 th Edition.
Yandell – Econ 216 Chap 8-1 Chapter 8 Confidence Interval Estimation.
Chapter 8: Estimating with Confidence
Solution: D. Solution: D Confidence Intervals for Proportions Chapter 18 Confidence Intervals for Proportions Copyright © 2010 Pearson Education, Inc.
Chapter 6 Confidence Intervals.
Chapter 7 Confidence Interval Estimation
Chapter 6 Confidence Intervals.
Chapter 8: Estimating with Confidence
St. Edward’s University
Econ 3790: Business and Economics Statistics
Chapter 8 Interval Estimation
Confidence Interval Estimation
Chapter 6 Confidence Intervals.
Chapter 8: Estimating with Confidence
Chapter 8: Estimating with Confidence
Chapter 8: Estimating with Confidence
Chapter 8: Estimating with Confidence
Chapter 8: Estimating with Confidence
Chapter 8: Estimating with Confidence
2/5/ Estimating a Population Mean.
Chapter 8: Estimating with Confidence
Chapter 8: Estimating with Confidence
Chapter 8: Estimating with Confidence
Presentation transcript:

Chapter 8 - Interval Estimation Margin of Error and the Interval Estimate A point estimator cannot be expected to provide the exact value of the population parameter. An interval estimate can be computed by adding and subtracting a margin of error to the point estimate. Point Estimate +/- Margin of Error The purpose of an interval estimate is to provide information about how close the point estimate is to the value of the parameter.

Interval Estimate of a Population Mean:  Known The general form of an interval estimate of a population mean is In order to develop an interval estimate of a population mean, the margin of error must be computed using either: the population standard deviation s , or the sample standard deviation s s is rarely known exactly, but often a good estimate can be obtained based on historical data or other information. We refer to such cases as the s known case.

Interval Estimate of a Population Mean:  Known There is a 1 -  probability that the value of a sample mean will provide a margin of error of less. Sampling distribution of 1 -  of all values /2 /2 

Interval Estimate of a Population Mean:  Known Sampling distribution of 1 -  of all values /2 /2 interval does not include m  [------------------------- -------------------------] [------------------------- -------------------------]

Interval Estimate of a Population Mean:  Known Interval Estimate of m where: is the sample mean 1 - is the confidence coefficient z/2 is the z value providing an area of /2 in the upper tail of the standard normal probability distribution s is the population standard deviation n is the sample size

Interval Estimate of a Population Mean:  Known Values of za/2 for the Most Commonly Used Confidence Levels Confidence Table Level a a/2 Look-up Area za/2 90% .10 .05 .9500 1.645 95% .05 .025 .9750 1.960 99% .01 .005 .9950 2.576

Meaning of Confidence Because 90% of all the intervals constructed using will contain the population mean, we say we are 90% confident that the interval includes the population mean m. We say that this interval has been established at the 90% confidence level. The value .90 is referred to as the confidence coefficient.

Interval Estimate of a Population Mean:  Known  

Interval Estimate of a Population Mean:  Known  

Interval Estimate of a Population Mean:  Known Example: Lloyds Department store In order to have a higher degree of confidence, the margin of error and thus the width of the confidence interval must be larger. Confidence level Margin of Error Interval estimate 90% 3.92 78.08 – 85.92 95% 3.29 78.71 – 85.29 99% 5.15 76.85 – 87.15

Interval Estimate of a Population Mean:  Known (another example) Example: Discount Sounds Discount Sounds has 260 retail outlets throughout the United States. The firm is evaluating a potential location for a new outlet, based in part, on the mean annual income of the individuals in the marketing area of the new location. A sample of size n = 36 was taken; the sample mean income is $41,100. The population is not believed to be highly skewed. The population standard deviation is estimated to be $4,500, and the confidence coefficient to be used in the interval estimate is .95.

Interval Estimate of a Population Mean:  Known Example: Discount Sounds 95% of the sample means that can be observed are within + 1.96 of the population mean . The margin of error is: Thus, at 95% confidence, the margin of error is $1,470.

Interval Estimate of a Population Mean:  Known Example: Discount Sounds Interval estimate of  is: $41,100 + $1,470 or $39,630 to $42,570 We are 95% confident that the interval contains the population mean.

Interval Estimate of a Population Mean:  Known Example: Discount Sounds Confidence Margin Level of Error Interval Estimate 90% 1234 $39,866 to $42,334 95% 1470 $39,630 to $42,570 99% 1932 $39,168 to $43,032 In order to have a higher degree of confidence, the margin of error and thus the width of the confidence interval must be larger.

Interval Estimate of a Population Mean: s Known Adequate Sample Size In most applications, a sample size of n = 30 is adequate. If the population distribution is highly skewed or contains outliers, a sample size of 50 or more is recommended. If the population is not normally distributed but is roughly symmetric, a sample size as small as 15 will suffice. If the population is believed to be at least approximately normal, a sample size of less than 15 can be used.

Interval Estimate of a Population Mean: s Unknown If an estimate of the population standard deviation s cannot be developed prior to sampling, we use the sample standard deviation s to estimate s . This is the s unknown case. In this case, the interval estimate for m is based on the t distribution. (We’ll assume for now that the population is normally distributed.)

t Distribution The t distribution is a family of similar probability distributions. A specific t distribution depends on a parameter known as the degrees of freedom. Degrees of freedom refer to the number of independent pieces of information that go into the computation of s. A t distribution with more degrees of freedom has less dispersion. As the degrees of freedom increases, the difference between the t distribution and the standard normal probability distribution becomes smaller and smaller.

t Distribution t distribution (20 degrees Standard of freedom) normal z, t For more than 100 degrees of freedom, the standard normal z value provides a good approximation to the t value

Interval Estimate of a Population Mean: s Unknown where: 1 - = the confidence coefficient t/2 = the t value providing an area of /2 in the upper tail of a t distribution with n - 1 degrees of freedom s = the sample standard deviation

t Distribution Selected values from the t distribution table

Interval Estimate of a Population Mean: s Unknown Example: Credit card debt for the population of US households The credit card balances of a sample of 70 households provided a mean credit card debt of $9312 with a sample standard deviation of $4007. Let us provide a 95% confidence interval estimate of the mean credit card debt for the population of US households. We will assume this population to be normally distributed.

Interval Estimate of a Population Mean: s Unknown At 95% confidence,  = .05, and /2 = .025. t.025 is based on n - 1 = 70 - 1 = 69 degrees of freedom.

Interval Estimate of a Population Mean: s Unknown  

Using Excel’s Descriptive Statistics Tool Steps Step 1: Click the Data tab on the Ribbon Step 2: In the Analysis group click Data Analysis Step 3: Choose Descriptive Statistics from the list of Analysis tools Step 4: When the Descriptive statistics dialog box appears Enter Input Range Select Grouped by columns Select Labels in the first row Select Output range: Enter C1 in the output range box Select summary statistics Select confidence level for mean Enter 95 in the confidence level for mean box Click OK

Interval Estimate of a Population Mean: s Unknown Adequate Sample Size In most applications, a sample size of n = 30 is adequate when using the expression to develop an interval estimate of a population mean. If the population distribution is highly skewed or contains outliers, a sample size of 50 or more is recommended.

Interval Estimate of a Population Mean: s Unknown Adequate Sample Size (continued) If the population is not normally distributed but is roughly symmetric, a sample size as small as 15 will suffice. If the population is believed to be at least approximately normal, a sample size of less than 15 can be used.

Summary of Interval Estimation Procedures for a Population Mean Can the population standard deviation s be assumed known ? Yes No Use the sample standard deviation s to estimate s s Known Case Use Use s Unknown Case

Sample Size for an Interval Estimate of a Population Mean Let E = the desired margin of error. E is the amount added to and subtracted from the point estimate to obtain an interval estimate. If a desired margin of error is selected prior to sampling, the sample size necessary to satisfy the margin of error can be determined.

Sample Size for an Interval Estimate of a Population Mean Margin of Error Necessary Sample Size

Sample Size for an Interval Estimate of a Population Mean The Necessary Sample Size equation requires a value for the population standard deviation s . If s is unknown, a preliminary or planning value for s can be used in the equation. 1. Use the estimate of the population standard deviation computed in a previous study. 2. Use a pilot study to select a preliminary study and use the sample standard deviation from the study. 3. Use judgment or a “best guess” for the value of s .

Sample Size for an Interval Estimate of a Population Mean Example: Cost of renting Automobiles in United States A previous study that investigated the cost of renting automobiles in the United States found a mean cost of approximately $55 per day for renting a midsize automobile with a standard deviation of $9.65. Suppose the project director wants an estimate of the population mean daily rental cost such that there is a .95 probability that the sampling error is $2 or less. How large a sample size is needed to meet the required precision?

Sample Size for an Interval Estimate of a Population Mean  

Sample Size for an Interval Estimate of a Population Mean (another example) Example: Discount Sounds Recall that Discount Sounds is evaluating a potential location for a new retail outlet, based in part, on the mean annual income of the individuals in the marketing area of the new location. Suppose that Discount Sounds’ management team wants an estimate of the population mean such that there is a .95 probability that the sampling error is $500 or less. How large a sample size is needed to meet the required precision?

Sample Size for an Interval Estimate of a Population Mean At 95% confidence, z.025 = 1.96. Recall that = 4,500. A sample of size 312 is needed to reach a desired precision of + $500 at 95% confidence.

Interval Estimate of a Population Proportion The general form of an interval estimate of a population proportion is The sampling distribution of plays a key role in computing the margin of error for this interval estimate. The sampling distribution of can be approximated by a normal distribution whenever np > 5 and n(1 – p) > 5.

Interval Estimate of a Population Proportion Normal Approximation of Sampling Distribution of Sampling distribution of /2 1 -  of all values /2 p

Interval Estimate of a Population Proportion where: 1 - is the confidence coefficient z/2 is the z value providing an area of /2 in the upper tail of the standard normal probability distribution is the sample proportion

Interval Estimate of a Population Proportion Example: Survey of women golfers A national survey of 900 women golfers was conducted to learn how women golfers view their treatment at golf courses in United States. The survey found that 396 of the women golfers were satisfied with the availability of tee times. Suppose one wants to develop a 95% confidence interval estimate for the proportion of the population of women golfers satisfied with the availability of tee times.

Interval Estimate of a Population Proportion  

Sample Size for an Interval Estimate of a Population Proportion  

Sample Size for an Interval Estimate of a Population Proportion  

Sample Size for an Interval Estimate of a Population Proportion Example: Survey of women golfers Suppose the survey director wants to estimate the population proportion with a margin of error of .025 at 95% confidence. How large a sample size is needed to meet the required precision? (A previous sample of similar units yielded .44 for the sample proportion.)

Sample Size for an Interval Estimate of a Population Proportion  

of a Population Proportion (another example) Interval Estimate of a Population Proportion (another example) Example: Political Science, Inc. Political Science, Inc. (PSI) specializes in voter polls and surveys designed to keep political office seekers informed of their position in a race. Using telephone surveys, PSI interviewers ask registered voters who they would vote for if the election were held that day. In a current election campaign, PSI has just found that 200 registered voters, out of 500 contacted, favor a particular candidate. PSI wants to develop a 90% confidence interval estimate for the proportion of the population of registered voters that favor the candidate.

of a Population Proportion Interval Estimate of a Population Proportion where: n = 500, = 200/500 = .40, z/2 = 1.645 PSI is 90% confident that the proportion of all voters that favor the candidate is between .364 and .436.

Sample Size for an Interval Estimate of a Population Proportion (another example) Example: Political Science, Inc. Suppose that PSI would like a .99 probability that the sample proportion is within + .03 of the population proportion. How large a sample size is needed to meet the required precision? (A previous sample of similar units yielded .40 for the sample proportion.)

Sample Size for an Interval Estimate of a Population Proportion At 99% confidence, z.005 = 2.576. Recall that  = .40. A sample of size 1769 is needed to reach a desired precision of + .03 at 99% confidence.

Implications of Big Data As the sample size becomes extremely large, the margin of error becomes extremely small and resulting confidence intervals become extremely narrow. No interval estimate will accurately reflect the parameter being estimated unless the sample is relatively free of nonsampling error. Statistical inference along with information collected from other sources can help in making the most informed decision.