Date of download: 10/9/2017 Copyright © ASME. All rights reserved.

Slides:



Advertisements
Similar presentations
Studies on Capacity Fade of Spinel based Li-Ion Batteries by P. Ramadass, A. Durairajan, Bala S. Haran, R. E. White and B. N. Popov Center for Electrochemical.
Advertisements

Date of download: 5/27/2016 Copyright © ASME. All rights reserved. From: Experimentally Validated Computational Fluid Dynamics Model for a Data Center.
Date of download: 5/31/2016 Copyright © ASME. All rights reserved. From: Development and Validation of a Uniaxial Nonlinear Viscoelastic Viscoplastic Stress.
Date of download: 6/1/2016 Copyright © 2016 SPIE. All rights reserved. Schematic of the electrochemical micromachining process. Figure Legend: From: Modeling.
Date of download: 6/28/2016 Copyright © ASME. All rights reserved. From: Two-Dimensional Unsteady Simulation of All-Vanadium Redox Flow Battery J. Thermal.
Date of download: 7/7/2016 Copyright © ASME. All rights reserved. From: Change in Radiative Optical Properties of Ta2O5 Thin Films due to High-Temperature.
Date of download: 9/17/2016 Copyright © ASME. All rights reserved. From: Composite Nanofiber Membrane for Lithium-Ion Batteries Prepared by Electrostatic.
Date of download: 9/22/2017 Copyright © ASME. All rights reserved.
Electronic and Ionic Transport in NCA and NMC Cathodes
Date of download: 10/1/2017 Copyright © ASME. All rights reserved.
Date of download: 10/3/2017 Copyright © ASME. All rights reserved.
From: A Numerical Investigation Into Cold Spray Bonding Processes
Date of download: 10/9/2017 Copyright © ASME. All rights reserved.
Date of download: 10/9/2017 Copyright © ASME. All rights reserved.
Date of download: 10/11/2017 Copyright © ASME. All rights reserved.
Date of download: 10/11/2017 Copyright © ASME. All rights reserved.
Date of download: 10/16/2017 Copyright © ASME. All rights reserved.
Date of download: 10/17/2017 Copyright © ASME. All rights reserved.
Date of download: 10/17/2017 Copyright © ASME. All rights reserved.
Date of download: 10/17/2017 Copyright © ASME. All rights reserved.
From: A New Geometry High Performance Small Power MCFC
Date of download: 10/20/2017 Copyright © ASME. All rights reserved.
Date of download: 10/20/2017 Copyright © ASME. All rights reserved.
Date of download: 10/20/2017 Copyright © ASME. All rights reserved.
Date of download: 10/23/2017 Copyright © ASME. All rights reserved.
Date of download: 10/23/2017 Copyright © ASME. All rights reserved.
Date of download: 10/24/2017 Copyright © ASME. All rights reserved.
Date of download: 10/25/2017 Copyright © ASME. All rights reserved.
Date of download: 10/25/2017 Copyright © ASME. All rights reserved.
Date of download: 10/26/2017 Copyright © ASME. All rights reserved.
Date of download: 10/27/2017 Copyright © ASME. All rights reserved.
Date of download: 11/1/2017 Copyright © ASME. All rights reserved.
Date of download: 11/1/2017 Copyright © ASME. All rights reserved.
Date of download: 11/1/2017 Copyright © ASME. All rights reserved.
From: Non-Newtonian Drops Spreading on a Flat Surface
Date of download: 11/2/2017 Copyright © ASME. All rights reserved.
From: Hopf Instabilities in Free Piston Stirling Engines
Date of download: 11/2/2017 Copyright © ASME. All rights reserved.
From: Heat Exchanger Efficiency
Date of download: 11/3/2017 Copyright © ASME. All rights reserved.
Date of download: 11/3/2017 Copyright © ASME. All rights reserved.
Date of download: 11/3/2017 Copyright © ASME. All rights reserved.
From: Numerical Simulations of Peristaltic Mixing
Date of download: 11/6/2017 Copyright © ASME. All rights reserved.
Date of download: 11/7/2017 Copyright © ASME. All rights reserved.
Date of download: 11/7/2017 Copyright © ASME. All rights reserved.
Date of download: 11/8/2017 Copyright © ASME. All rights reserved.
Date of download: 11/11/2017 Copyright © ASME. All rights reserved.
Date of download: 11/12/2017 Copyright © ASME. All rights reserved.
Date of download: 11/14/2017 Copyright © ASME. All rights reserved.
Date of download: 12/3/2017 Copyright © ASME. All rights reserved.
Date of download: 12/20/2017 Copyright © ASME. All rights reserved.
Date of download: 12/21/2017 Copyright © ASME. All rights reserved.
Date of download: 12/22/2017 Copyright © ASME. All rights reserved.
Date of download: 12/25/2017 Copyright © ASME. All rights reserved.
Date of download: 12/26/2017 Copyright © ASME. All rights reserved.
Date of download: 12/29/2017 Copyright © ASME. All rights reserved.
Date of download: 12/31/2017 Copyright © ASME. All rights reserved.
Date of download: 12/31/2017 Copyright © ASME. All rights reserved.
Date of download: 1/2/2018 Copyright © ASME. All rights reserved.
Date of download: 1/3/2018 Copyright © ASME. All rights reserved.
On the Electrolytic Stability of Iron-Nickel Oxides
He-Qun Dai1,2, Hao Xu1,2, Yong-Ning Zhou2, Fang Lu1, and Zheng-Wen Fu
The Effectiveness Model for Electrochemical Reaction in SOFCs and Explanation of Its Physical Implication Dongwoo Shin1 , Jin Hyun Nam2,* , Charn-Jung.
An Effectiveness Model for Predicting
Erika J Mancini, Felix de Haas, Stephen D Fuller  Structure 
Volume 11, Pages (January 2019)
Lithium-Anode Protection in Lithium–Sulfur Batteries
Chemo-Mechanical Challenges in Solid-State Batteries
Fig. 2 Stabilizing the lithium-electrolyte interface.
Presentation transcript:

Date of download: 10/9/2017 Copyright © ASME. All rights reserved. From: Analysis of Long-Range Interaction in Lithium-Ion Battery Electrodes J. Electrochem. En. Conv. Stor.. 2016;13(3):031006-031006-13. doi:10.1115/1.4035198 Figure Legend: (a) Schematic representation of a Li-ion battery half cell. Half cells are prepared with lithium counter electrode and test electrode to characterize electrochemical performance of the electrode under investigation and (b) a pore-scale view of local arrangement of different phases in composite Li-ion battery electrode. The electrochemical reaction—intercalation takes place at active material–electrolyte interface. This interfacial area gets covered due to the addition of electrochemically inactive species like conductive additive and binder, which are quite essential for overall cell performance and stability. Active material irreversibly reacts with electrolyte to form solid electrolyte interphase (SEI), which is not shown on the figure.

Date of download: 10/9/2017 Copyright © ASME. All rights reserved. From: Analysis of Long-Range Interaction in Lithium-Ion Battery Electrodes J. Electrochem. En. Conv. Stor.. 2016;13(3):031006-031006-13. doi:10.1115/1.4035198 Figure Legend: (a) Electrochemical properties of cathode active material (LiyNi1/3Mn1/3Co1/3O2), adapted from Ref. [35] and (b) electrolyte (LiPF6 in PC/EC/DMC) adapted from Ref. [36] for the present study. Here “y” in NMC corresponds to ratio (Cc/Ccmax).

Date of download: 10/9/2017 Copyright © ASME. All rights reserved. From: Analysis of Long-Range Interaction in Lithium-Ion Battery Electrodes J. Electrochem. En. Conv. Stor.. 2016;13(3):031006-031006-13. doi:10.1115/1.4035198 Figure Legend: Effect of acetylene black: PVDF weight ratio on internal structure of AB + PVDF phase as hypothesized and justified by conductivity values by Liu et al. [9]. This figure schematically explains the hypothesis of nonmonotonic conductivity variation with increase in conductive additives. (a) Pure binder (PVDF) (b) at low weight fraction of conductive additive, the effective conductivity increase is not significant (c) at a threshold value, the conductive additives form percolation pathways and effective conductivity boosts up significantly (d) and (e) for higher ratios, more and more conducive pathways are formed, still the amount of acetylene black is low enough to form agglomerates (f) as amount of conductive additives is increased further beyond second critical value, agglomeration takes place. Also, the conductive additives form blind chains. Either of these does not sufficiently contribute to effective electron conduction and the electrical conductivity starts decreasing despite addition of more conductive additives. Subfigure (g) show variation in conductivity of NCAO electrodes with 30% porosity and 0.8:1 AB:PVDF composition, as predicted by computations. These simulated trends match well with the experimental conductivity values (dots) reported for NCAO electrodes having similar AB:PVDF composition by Liu et al. [9]. The discrepancy can be attributed to stochastic reconstruction of secondary phases but the values are quite close. Figure (h) displays the conductivity variation of NMC electrodes with different AB:PVDF composition and 30% porosity. These electrodes are further used for electrochemical simulations.

Date of download: 10/9/2017 Copyright © ASME. All rights reserved. From: Analysis of Long-Range Interaction in Lithium-Ion Battery Electrodes J. Electrochem. En. Conv. Stor.. 2016;13(3):031006-031006-13. doi:10.1115/1.4035198 Figure Legend: (a) Comparison of model predictions against experiments of Zheng et al. [13]. The cells are first charged at C/10 rate till 4.5 V voltage cutoff. After rest period, these half cells are discharged at different rates. The simulated half cells have the identical active material loading, conductive additive and binder composition, electrode thickness, and porosity as experimental electrodes. The slight mismatch for capacity values is attributed to active particle agglomeration. (b) For this 25 μm electrode with 85% NMC, 7% acetylene black, 8% PVDF binder by wt. and 35% porosity, performance at different rates of discharge is simulated. Higher discharge rates give rise to more overpotential and reduced capacity.

Date of download: 10/9/2017 Copyright © ASME. All rights reserved. From: Analysis of Long-Range Interaction in Lithium-Ion Battery Electrodes J. Electrochem. En. Conv. Stor.. 2016;13(3):031006-031006-13. doi:10.1115/1.4035198 Figure Legend: Effect of AB + PVDF phase composition on discharge performance of Li-NMC half cells at (a) 0.5 C discharge rate (b) 2 C discharge rate. For the same amount of active material, lower conductivity AB + PVDF phase (0.2:1 AB:PVDF by wt.) leads to increased potential drop due to electron conduction and exhibits consistently lower cell voltage compared to higher conductive counterpart (i.e., 0.8:1 AB:PVDF by wt.). As active material weight is reduced and AB + PVDF phase amount is increased, electrochemically active area reduces and gives rise to greater kinetic losses. For 65% active material, AB + PVDF phase amount (35%) is sufficient to provide percolation pathways for electron conduction and hence corresponding limitation vanishes. Thus, varying binder composition at 65% active material loading does not lead to striking difference in performance.

Date of download: 10/9/2017 Copyright © ASME. All rights reserved. From: Analysis of Long-Range Interaction in Lithium-Ion Battery Electrodes J. Electrochem. En. Conv. Stor.. 2016;13(3):031006-031006-13. doi:10.1115/1.4035198 Figure Legend: Effect of active material loading on electrochemical performance of Li-NMC half cells (a) 0.2:1 AB:PVDF composition (b) 0.8:1 AB:PVDF composition. The upper family of curves corresponds to 0.5 C discharge while the lower set corresponds to 2 C discharge. Decreasing active material loading gives reduced electrochemically active area and hence greater kinetic overpotential. For sufficiently conductive electrodes, this effect is a dominant factor for performance limitation. For lower electronic conductivity, potential drop due to electron conduction can counter the active area increase as reflected on subfigure (a). This would become more apparent at higher rates of operation.

Date of download: 10/9/2017 Copyright © ASME. All rights reserved. From: Analysis of Long-Range Interaction in Lithium-Ion Battery Electrodes J. Electrochem. En. Conv. Stor.. 2016;13(3):031006-031006-13. doi:10.1115/1.4035198 Figure Legend: Grid independence test is performed to justify numerical resolution of the simulation. The plots show discharge behavior of 85% NMC, 7% acetylene black and 8% PVDF electrodes of 25 μm thickness, and 35% porosity. 10 μm separator is used. The simulations exhibit grid convergence and M = 21 cells discretization is chosen for further simulations.