HIE-ISOLDE experiments IS546 and IS596

Slides:



Advertisements
Similar presentations
LoI Relativistic Coulomb M1 excitation of neutron-rich 85 Br N. Pietralla G. Rainovski J. Gerl D. Jenkins.
Advertisements

HIGS2 Workshop June 3-4, 2013 Nuclear Structure Studies at HI  S Henry R. Weller The HI  S Nuclear Physics Program.
Spectroscopy at the Particle Threshold H. Lenske 1.
Valence shell excitations in even-even spherical nuclei within microscopic model Ch. Stoyanov Institute for Nuclear Research and Nuclear Energy Sofia,
Structure of the ECEC candidate daughter 112 Cd P.E. Garrett University of Guelph TRIUMF Excellence Cluster “Universe”, Technische Universität München.
MINIBALL g-ray Spectroscopy far from Stability
CEA DSM Irfu Shell evolution towards 100 Sn Anna Corsi CEA Saclay/IRFU/SPhN.
Study of single particle properties of neutron-rich Na istopes on the „shore of the island of inversion“ by means of neutron-transfer reactions Thorsten.
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
Proton Inelastic Scattering on Island-of-Inversion Nuclei Shin’ichiro Michimasa (CNS, Univ. of Tokyo) Phy. Rev. C 89, (2014)
Latest results from MINIBALL at REX‐ISOLDE
Coulomb excitation and  -decay studies at (REX-)ISOLDE around Z = 28 J. Van de Walle – KVI - Groningen 1. ISOLDE and REX-ISOLDE ; 2. Results around Z=28.
GRETINA experiments with fast beams at NSCL Dirk Weisshaar,  GRETINA and fast-beam experiments  Some details on implementation at NSCL  Performance.
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
Reiner Krücken - Yale University Reiner Krücken Wright Nuclear Structure Laboratory Yale University Why do we measure lifetimes ? The recoil-distance method.
Quadrupole collectivity in neutron-rich Cd isotopes Thorsten Kröll for the IS411/IS477/IS524 collaborations Work supported by BMBF (Nr. 06DA9036I and 05P12RDCIA),
Nuclear structure around 100 Sn Darek Seweryniak, ANL.
3/1/13 WR, DGS111 Inverse-kinematic studies with Gretina and Phoswich Wall Walter Reviol and Demetrios Sarantites (Washington University) Gretina Workshop,
Core-excited states in 101 Sn Darek Seweryniak, ANL GS/FMA collaboration.
UNIVERSITY OF JYVÄSKYLÄ RDDS measurements at RITU and prospects at HIE-ISOLDE T. Grahn University of Jyväskylä HIE-ISOLDE Spectrometer Workshop, Lund
Experimental measurement of the deformation through the electromagnetic probe Shape coexistence in exotic Kr isotopes. Shape coexistence in exotic Kr isotopes.
Probed with radioactive beams at REX-ISOLDE Janne Pakarinen – on behalf of the IS494 collaboration – University of Jyväskylä ARIS 2014 Tokyo, Japan Shapes.
Coulomb excitation of neutron-rich 32,33 Mg nuclei with MINIBALL at HIE-ISOLDE P. Reiter 1, B. Siebeck 1, M. Seidlitz 1, A. Blazhev 1, K. Geibel 1, N.
Nuclear Structure SnSn P,n p n (  )‏ ( ,Xn)‏ M1E1 p,nn X λ ?E1 ExEx  Study of the pygmy dipole resonance as a function of deformation.
ExperimentSpokesmanGoalRunning time Thesis? Scissors ModeTonchevAnalyze Scissors Mode excitations in actinide nuclei Pgymy DipoleTonchevAnalyze evolution.
H.Sakurai Univ. of Tokyo Spectroscopy on light exotic nuclei.
E. Sahin, G. de Angelis Breaking of the Isospin Symmetry and CED in the A  70 mass region: the T z =-1 70 Kr.
Shell structure: ~ 1 MeV Quantum phase transitions: ~ 100s keV Collective effects: ~ 100s keV Interaction filters: ~ keV Binding energies, Separation.
Trends in Heavy Ion Physics Research, Dubna, May Present and future physics possibilities at ISOLDE Karsten Riisager PH Department, CERN
Andreas Görgen INTC Shape Transitions and Coexistence in Neutron-Deficient Rare Earth Isotopes A. Görgen 1, F.L. Bello Garrote 1, P.A. Butler.
Norbert Pietralla Isolde WS2007 Nuclear Mixed-Symmetry States as Probe for pn Effective Valence Shell Interaction Institut für Kernphysik, TU-Darmstadt.
February 12-15,2003 PROCON 2003, Legnaro-Padova, Italy Jean Charles THOMAS University of Leuven / IKS, Belgium University of Bordeaux I / CENBG, France.
Dipa Bandyopadhyay University of York
UNIVERSITY OF JYVÄSKYLÄ Mapping the boundaries of the seniority regime and collective motion: Coulomb excitation studies of 208 Po and 210,212 Rn Addendum.
Coulomb-excitation of the exotic nuclei 94 Kr and 96 Kr M. Albers 1, N. Warr 1, D. Mücher 1, A. Blazhev 1, J. Jolie 1, B. Bastin 2, C. Bernards 1, J. Butterworth.
VAMOS « Hot » results and perspectives * Spectroscopy of n-rich nuclei produced by fission * New gas-filled spectrometer-separator for fusion Getting ready.
Shape coexistence in the neutron- deficient Pb region: Coulomb excitation at REX-ISOLDE Liam Gaffney 1,2 Nele Kesteloot 2,3 1 University of the West of.
Physics at the extremes with large gamma-ray arrays Lecture 3 Robert V. F. Janssens The 14 th CNS International Summer School CNSSS15 Tokyo, August 26.
E.Clément Novembre 2011 E.Clément-GANIL Onset of collectivity in neutron-rich Sr and Kr isotopes: Prompt spectroscopy after Coulomb excitation at REX-ISOLDE,
Spectroscopy studies around 78 Ni and beyond N=50 via transfer and Coulomb excitation reactions J. J. Valiente Dobón (INFN-LNL, Padova,Italy) A. Gadea.
Nature of Mixed-Symmetry 2 + States in 94 Mo from High-Resolution Electron and Proton Scattering and Line Shape of the First Excited 1/2 + State in 9 Be.
Dimitar Tonev, Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences Lifetime measurements in mass regions A=100 and A=130 as.
Georgi Georgiev CSNSM, Orsay, France Nuclear structure studies at the r-process path Coulomb excitation of odd-A neutron-rich Rb isotopes at REX-ISOLDE.
Magnetic moment and lifetime measurements in 140 Ba Proposal to the INTC Committee A. Jungclaus, C. Bauer, M. Danchev, R. Gernhäuser, A. Illana, P. John,
Coulomb excitation of Coulomb excitation of doubly magic 132 Sn with MINIBALL at HIE-ISOLDE P. Reiter 1, D. Rosiak 1, B. Siebeck 1, M. Seidlitz 1, A. Blazhev.
ELI & FAIR: A Natural Pair Nuclear Structure w
The role of isospin symmetry in medium-mass N ~ Z nuclei
Georgi Georgiev CSNSM, Orsay, France
Ch. Stoyanov Two-Phonon Mixed-Symmetry States in the Domain N=52
Thorsten Kröll* / Gary Simpson+
First results from IS468 and further investigation of in-trap decay of 62Mn First results from 2008 ; Problems and questions ; Further investigations ;
L. Acosta1, M. A. G. Álvarez2, M. V. Andrés2, C. Angulo3, M. J. G
Giant Monopole Resonance
Emmanuel Clément IN2P3/GANIL – Caen France
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Proposal to the ISOLDE and Neutron Time-of-Flight Committee Effects of the neutron halo in 15C scattering at.
Bulgaria at ISOLDE Georgi Rainovski.
Exotic nuclei beyond 132Sn: where do we stand?
Search for unbound excited states of proton rich nuclei
ISOLDE Workshop and Users Meeting 2017
Irina Stefanescu1, O. Ivanov1, J. Van de Walle1, N. Patronis1, D
In-beam and isomer spectroscopy in the third island of inversion at EXOGAM+VAMOS E.Clément (GANIL)
Isospin Symmetry test on the semimagic 44Cr
Study of the resonance states in 27P by using
Coulomb Excitation of 114, 116Sn
Institut de Physique Nucléaire Orsay, France
Kazuo MUTO Tokyo Institute of Technology
108Sn studied with intermediate-energy Coulomb excitation
Department of Physics, Sichuan University
Probing correlations by use of two-nucleon removal
Presentation transcript:

HIE-ISOLDE experiments IS546 and IS596 Impact of microscopic structure on isovector valence shell excitations of nuclei near N=82 HIE-ISOLDE experiments IS546 and IS596 Norbert Pietralla, TU Darmstadt 2+ TU Darmstadt: N.Pietralla, R.Stegmann, C.Stahl, V.Werner, S. Ilieva, T.Kröll, M.Lettmann, O.Möller, M.Reese, M.Thürauf University of Sofia: G.Rainovski, D.Kocheva, K.Gladnishki, M.Djongolov University of Cologne: J.Jolie, A.Blahzev, C.Fransen, N.Warr et al. & ISOLDE- / MINIBALL-Collaborations M1 B(M1) strong E2 B(E2) - weak 21+ E2 B(E2) - collective 0+

 Microscopic origin of Quadrupole Mixed-Symmetric States Nuclei are two-component quantum systems Coupling to symmetric and antisymmetric (“mixed- symmetric”) state Fingerprint: Strong M1 transition between 2+ states Predicted by IBM-2 Microscopic description by: QPM LSSM  0+ 2+   + n 2 p ~ 1 µN2 ~ 1 W.u. M1 E2 N. Lo Iudice et al., Phys. Rev. C 77, 044310 (2008) D. Bianco et al., Phys. Rev. C 85, 034332 (2012)

G.Rainovski, N. Pietralla et al., Phys. Rev. Lett. 96 122501 (2006). Experimental approach – Inverse Kinematics Coulomb excitation reactions ANL program Background subtraction Doppler shift corrections Lorentz boost corrections (v~6%c) Angular distributions (Gammasphere=17 rings, 17 ) Coulex analysis: Coulex codes (CLX, Gosia) G.Rainovski, N. Pietralla et al., Phys. Rev. Lett. 96 122501 (2006).

IS546 Coulex of 140Nd, 142Sm

Stabilization of Nuclear Isovector Valence-Shell Excitations G. Rainovski et al., Phys. Rev. Lett. 96, 122501 (2006) G. Rainovski et al. PRL 96, 122501 (2006) N. Pietralla et al. PRC 58, 796 (1998) T. Ahn et al. PLB 679, 19 (2009) M. Danchev et al. PRC 84, 061306 (2011) What are the properties of MSSs of 140Nd and 142Sm? d5/2 Z=58 g7/2 g7/2-2 The properties of MSSs are sensitive to the sub-shell structure! N=80 N=82

Motivation: Stabilization of Nuclear Isovector Valence-Shell Excitations – 140Nd and 142Sm QPM, IBM Shell model Single 2+ MSS of 132Te, 134Xe, 136Ba Fragmented 2+ MSS of 138Ce QPM and SM reproduce situation in N=80 What is the predictive power? QPM: single 2+ MSS of 140Nd SM: fragmented 2+ MSS of 140Nd Need to identify and quantitatively study MSSs of 140Nd and 142Sm

Preparation: REX-ISOLDE experiment IS496 Hitherto method (e.g. 138Ce): Coulomb excitation at 80-85% CB GAMMASPHERE in singles mode  Without particle detector Beam intensity ~ 109 pps possible 12C target  Inverse kinematics  No target excitation  Normalization to transition But: Stable beams! Situation for 140Nd, 142Sm: Radioactive nuclei  Beam development  Particle detector necessary Lower beam energy – 60-65% CB (2.85 Mev/u) Lower beam intensity unknown  Necessity to measure B(E2) previous REX-ISOLDE IS496

Previous REX-ISOLDE experiment IS496 Experimental runs 01.07. – 04.07.2011 Beam: 140Nd Contamination: 140Sm 2.85 MeV/u (Ekin = 399 MeV) HRS & RILIS Target: 48Ti (1.4 mg/cm2) 64Zn (1.55 mg/cm2) 28.06. – 30.06.2012 Beam: 142Sm Contamination: 142Eu, 142Pm 2.85 MeV/u (Ekin = 405 MeV) GPS & RILIS Target: 48Ti (1.4 mg/cm2) 94Mo (2 mg/cm2)

Previous REX-ISOLDE experiment IS496 Results Beams for 140Nd, 142Sm (primary target material: Ta) have been developed, tested and used successfully Including RILIS ionization scheme Beam intensities ~ 105 – 106 pps

REX-ISOLDE experiment IS496 Results 140Nd: 33 (2) W.u. 142Sm: 32 (4) W.u. Z=58 sub-shell closure in data C. Bauer et al., Phys. Rev. C 88, 021302 (2013) R. Stegmann et al., Phys. Rev. C 91, 054326 (2015)

Preparation done: Proceed to IS546 140Nd and 142Sm @ HIE-ISOLDE Is sub-shell closure at Z=58 responsible for fragmentation? Or does the increasing valence space dissolve the isovector structure? HIE-ISOLDE (~4 MeV/u) enables us now to identify and quantitatively study MSSs of 140Nd and 142Sm: IS546

IS596 Coulex of 136Te

B(E2) “anomaly” in 136Te low energy 2p 2n-1 2n small E2 Origin of the anomaly: Neutron dominance in the 21+ wave function low energy 2p 2n-1 2n Shell Model: N. Shimizu, T. Otsuka, T. Mizusaki, M. Honma, PRC 70, 054313 (2004) QRPA: J. Terasaki et al., PRC 66, 054313 (2002) small E2

Configurational Isospin Polarization 132Te – first MS observation with RIB 21,MS+ observed in coincidence with 12C recoils detected in HyBall. >0.23 μN2 RIB: 132Te @ 3MeV/u 12C target 0.5(2)Wu 10(2) Wu M. Danchev, G. Rainovski, N. Pietralla et al., PRC84 ('11) 061306(R) I(691 keV) /I(1665 keV) = 100(52)

Configurational Isospin Polarization the case of 132Te – no CIP Shell model calculations (A. Gargano, A. Covello) Interaction: Vlow-k from the CD-Bonn potential, core – 132Sn; Space: {0g7/2, 1d5/2,1d3/2, 2s1/2, 0h11/2} for both protons and neutrons; Observable Experiment Shell Model B(E2; 2+10+1) [Wu] 10(1) 7.8 (2+1) [N] +0.92(10) +0.68 B(E2; 2+20+1) [Wu] 0.5(1) 0.21 B(E2; 2+22+1) [Wu] 0  20 0.24 B(M1; 2+22+1) [N2] >0.23 0.20 0+1 = 0.94 0+10+1 + ... 2+1 = 0.66 0+12+1 + 0.62 2+10+1+ ... 2+2 = 0.58 0+12+1 - 0.63 2+10+1+ ... 0+1 = 0+1; 130Sn 2+1 = 2+1; 130Sn 0+1 = 0+1; 134Te 2+1 = 2+1; 134Те Almost balanced proton-neutron characters, i.e. no CIP (J. D. Holt et al., Phys. Rev. C 76, 034325 (2007))

136Te: 21+ neutron dominated 22+ - “MS state”, proton domin. CIP case predicted: 136Te Skyrme-QPM: A.Severyukhin, N.Arsenyev, N.Pietralla, V.Werner, PRC 90, 011306(R) (2014) 2+1 and 2+2 have significant E2  1-phonon states Strong M1 between them  2+2 = 2+1,MS [21+]QRPA = ~86% Neutron, [22+]QRPA ~68% Proton (opposite pn-phase) Shell Model: N. Shimizu et al., PRC 70, 054313 (2004); N. Lo Iudice et al., Phys. Rev. C 77, 044310 (2008); D. Bianco et al., Phys. Rev. C 84, 024310 (2011); D. Bianco et al., Phys. Rev. C 85, 034332 (2012); D. Bianco et al., Phys. Rev. C 86, 044325 (2012); D. Bianco et al., Phys. Rev. C 88, 024303 (2013); Strongly broken p-n exchange symmetry 136Te: 21+ neutron dominated 22+ - “MS state”, proton domin. „Smoking gun“ for reduced pn-interaction for cause of Te anomaly

42 shifts recommended by INTC HIE-ISOLDE experiment IS546 42 shifts recommended by INTC Measure E/M matrix elements from Coulex yields using MINIBALL + DSSD  Quantitative identification of 2+ MSSs of 140Nd and 142Sm via measurement of B(M1) strength Model predictions for 140Nd: SM - Fragmented MSS QPM: Single isolated MSS Shell stabilization of MSSs? Beam: 140Nd and 142Sm RILIS beams – developed and tested! Beam energy 3.62 MeV/u for 52Cr target or 4.5 MeV/u for 208Pb target (85% CB) 140Nd 52Cr Si-CD Coverage Can run immediately!

HIE-ISOLDE experiment IS596 9 shifts recommended by INTC Measure E/M matrix elements from Coulex yields using MINIBALL + DSSD Si-CD Coverage target-like beam-like Primary target UCx/graphene, RILIS beam Ebeam= 510 MeV, target 3 mg/cm2 58Ni In addition, measure ~100 fs 22+ lifetime through differential DSAM 22+, 1568  = 50 fs  = 100 fs  = 500 fs  = 40 ps 0.51 μN2 3.6 W.u. 21+, 606 Needs beam development! 5.9(9) W.u. 0+

Scheduling G. Rainovski is CERN fellow in fall 2016 Ideally, we would like to run both experiments a.s.a.p. 140Nd, 142Sm is straight forward (42 shifts) 136Te is scientifically more urgent (9 sh.; 3 sh. beam + 6 sh. production) Te beam needs further development status of HIE-ISOLDE accelerator module? Thank you!

Backup slides

REX-ISOLDE experiment IS496 Contamination analysis 140Nd Beam contamination of 140Sm Treatment via comparison of laser on / laser off run 142Sm Contamination of 142Eu and 142Pm Treatment via decay analysis at beginning and end of experiment

140Nd status QPM predictions Ch. Stoyanov, private communication Experiment E. Williams et al., PRC 80, (2009) 054309 K. Gladnishki, PRC 82, (2010) 037302 SM predictions K. Sieja et al., PRC 80, (2009) 054311 =0.186(85) 97(4)% M1 =-0.08(8) 99(1)% M1 October 31, 2012 | INTC meeting | Christopher Bauer - TU Darmstadt

Evolution of the one-phonon 2+1,ms in N=80 isotones 2+ 2+1 2+ms 2+ V K. Heyde and J. Sau Phys. Rev. C, 33, 1050(1986)  = 0.15(1) MeV T. Ahn, L. Coquard, N. Pietralla et al., Phys. Lett. B 679, 19 (2010)

94Zr 132Te 136Te CIP in 94Zr vs. 132,136Te gexp: gth: +0.9(3) -0.31(2) V. Werner et al., PRC 78, 031301(R) (2008) 0+, 0.0 21+, 919 22+, 1671 5(1) W.u. 3.9(3) W.u. 0.15(3) μN2 94Zr gth: +0.98 -0.25 J.D. Holt et al. PRC 76, 034325 (2007) Lifetimes: E. Elhami et al., PRC 75, 011301(R) (2007); E.E. Peters et al., PRC 88, 024317 (2013) 0+, 0.0 21+, 974 22+, 1665 10(2) W.u. 0.5(2) W.u. >0.23 μN2 132Te 22+, 1568 0+ 21+, 606 5.9(9) W.u. 3.6 W.u. 0.51 μN2 136Te

Configurational Isospin Polarization 2 𝑚𝑠 + = 𝑎 2 ⋅ 2 𝑛 + − 𝑏 2 2 𝑝 + 2 𝑠𝑦𝑚 + = 𝑎 1 ⋅ 2 𝑛 + + 𝑏 1 2 𝑝 + protons and neutrons contribute about equally: large mixing ∣ 𝑎 𝑖 ∣≈∣ 𝑏 𝑖 ∣ imbalance in proton and neutron contributions: small mixing ∣ 𝑎 𝑖 ∣≠∣ 𝑏 𝑖 ∣ observables which are sensitive to p/n content: B(E2)'s and M1