H. Kamada (Kyushu Institute of Technology, Japan) H. Witala , J

Slides:



Advertisements
Similar presentations
1 Eta production Resonances, meson couplings Humberto Garcilazo, IPN Mexico Dan-Olof Riska, Helsinki … exotic hadronic matter?
Advertisements

June 20, Back-to-Back Correlations in p+p, p+A and A+A Reactions 2005 Annual AGS-RHIC User's Meeting June 20, BNL, Upton, NY Ivan Vitev, LANL Ivan.
第十四届全国核结构大会暨第十次全国核结构专题讨论会 浙江 · 湖州 · Nuclear matter with chiral forces in Brueckner-Hartree-Fock approximation 李增花 复旦大学核科学与技术系(现代物理研究所)
The Electromagnetic Structure of Hadrons Elastic scattering of spinless electrons by (pointlike) nuclei (Rutherford scattering) A A ZZ  1/q 2.
A novel approach to include pp Coulomb force into the 3N Faddeev calculations H. Witała, R. Skibiński, J. Golak Jagiellonian University W. Gloeckle Ruhr.
Three-nucleon force effects in proton- deuteron scattering Souichi Ishikawa (Hosei University) FB19, Aug Sep. 5, Bonn.
Recent experiments on three nucleon systems and problems to be solved Kenshi Sagara Kyushu U., Fukuoka, Japan FB19.
fb19 nd Scattering Observables Derived from the Quark-Model Baryon-Baryon Interaction 1.Motivation 2.Quark-model baryon-baryon interaction fss2.
Study of Deuteron-Deuteron Scattering at 65 MeV/nucleon Ahmad Ramazani-Moghaddam-Arani (KVI-Cracow-Katowice-IUCF) 19th International IUPAP Conference on.
Analyzing Powers of the Deuteron-Proton Breakup in a Wide Phase Space Region Elżbieta Stephan Institute of Physics University of Silesia Katowice, Poland.
Photodisintegration of in three dimensional Faddeev approach The 19th International IUPAP Conference on Few-Body Problems in Physics S. Bayegan M. A. Shalchi.
Dept. of Phys., Kyushu Univ. Measurement of 2 H(p,pp)n cross sections at E p = 250 MeV Sho Kuroita 1, K. Sagara 1, Y. Eguchi 1, K. Yashima 1, T. Shishido.
Three-nucleon interaction dynamics studied via the deuteron-proton breakup Elżbieta Stephan Institute of Physics, University of Silesia.
R. Machleidt, University of Idaho University of Idaho The missing three-nucleon forces: Where are they? 2009 Mardi Gras “Special Symmetries and Ab Initio.
R. Machleidt University of Idaho Nuclear forces from chiral EFT: The unfinished business.
R. Machleidt, University of Idaho D. R. Entem, University of Salamanca Sub-Leading Three-Nucleon Forces in Chiral Perturbation Theory.
Spectroscopic factors and Asymptotic Normalization Coefficients from the Source Term Approach and from (d,p) reactions N.K. Timofeyuk University of Surrey.
L. R. Dai (Department of Physics, Liaoning Normal University) Z.Y. Zhang, Y.W. Yu (Institute of High Energy Physics, Beijing, China) Nucleon-nucleon interaction.
XII Nuclear Physics Workshop Maria and Pierre Curie: Nuclear Structure Physics and Low-Energy Reactions, Sept , Kazimierz Dolny, Poland Self-Consistent.
Measurements of Ay for the pd breakup reaction at 250MeV Yukie Maeda (CNS, Univ. of Tokyo) T. Uesaka, T. Kawabata, K. Suda, S. Sakaguchi, Y. Sasamoto (CNS,
FB181 Dynamics of Macroscopic and Microscopic Three-Body Systems Outline Three-body systems of composite particles (clusters) Macroscopic = Use of fewer.
Experimental Study of Three Nucleon Forces via Few Nucleon System RIKEN Kimiko Sekiguchi.
Measurements of the cross sections and Ay for D(p,n) inclusive breakup reaction at 170 MeV Y. Maeda Y. Maeda, T. Saito, H. Miyasako (Univ. of Miyazaki)
Discrepancy in pd Breakup Reaction at Ep = 13 MeV K. Sagara, M. Tomiyama, S. Shimomoto, T. Ishida, T. Kudoh, S. Kuroita, T. Morikawa, M. Shiota, H. Ohira,
Cross section enhancement in pd reactions at higher energ y K. Sagara, S. Kuroita, T. Sueta, H. Shimoda, Y. Eguchi, K. Yashima, T. Yabe, M. Dozono, Y.
Spin dependent momentum distribution of proton in 3 He studied via proton induced exclusive knock-out reaction CNS, Univ. of Tokyo Y. Shimizu I.Introduction.
What have we learned about three-nucleon forces at intermediate energies? Nasser Kalantar-Nayestanaki Kernfysisch Versneller Instituut, RuG Strong interactions:
Extended Brueckner-Hartree-Fock theory in many body system - Importance of pion in nuclei - Hiroshi Toki (RCNP, KEK) In collaboration.
R. Machleidt, University of Idaho Recent advances in the theory of nuclear forces and its relevance for the microscopic approach to dense matter.
NPD-2009 Conference, ITEP, Moscow, November , Spin structure of the “forward” charge exchange reaction n + p  p + n and the deuteron.
1 11/20/13 21/11/2015 Jinniu Hu School of Physics, Nankai University Workshop on “Chiral forces and ab initio calculations” Nov. 20- Nov. 22,
Tensor Optimized Few-body Model for s-shell nuclei Kaori Horii, Hiroshi Toki (RCNP, Osaka univ.) Takayuki Myo, (Osaka Institute of Technology) Kiyomi Ikeda.
11 Tensor optimized shell model with bare interaction for light nuclei In collaboration with Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN 19th International.
Non-Linear Effects in Strong EM Field Alexander Titov Bogoliubov Lab. of Theoretical Physics, JINR, Dubna International.
A closer look to the H dibaryon Teresa Fernández Caramés (U. Salamanca) poster2.jpg [T.F.C and A. Valcarce, Physical Review C 85, (2012)]
Electron scattering off few-nucleon systems: theory meets experiment J.Golak, R.Skibiński, H. Witała, K.Topolnicki, E.Epelbaum, H. Kamada, A. Nogga JAGIELLONIAN.
ELECTRIC DIPOLE MOMENTS OF A=3 NUCLEI Young-Ho Song(Institute of Basic Science) Collaboration with Rimantas Lazauskas( IPHC, IN2P3-CNRS) Vladimir Gudkov(
Large-Scale Shell-Model Study of the Sn-isotopes
May the Strong Force be with you
The 8th International Workshop
Description of nuclear structures in light nuclei with Brueckner-AMD
Two-body force in three-body system: a case of (d,p) reactions
The Strong Force: NN Interaction
Satoshi Nakamura (Osaka University)
Extracting h-neutron interaction from g d  h n p data
R. Machleidt, University of Idaho
Mean free path and transport parameters from Brueckner-Hartree-Fock
Nuclear structure calculations with realistic nuclear forces
Resonance and continuum in atomic nuclei
Covariant Formulation of the Deuteron
The nucleon-nucleon interaction in the chiral expansion
Rimantas LAZAUSKAS, IPHC Strasbourg, France
Department of Physics, Tohoku University
Structure and dynamics from the time-dependent Hartree-Fock model
Three-body resonance in the KNN-πYN coupled system
Workshop on Precision Physics and Fundamental Constants
Exotic nuclei beyond 132Sn: where do we stand?
Chiral Nuclear Forces with Delta Degrees of Freedom
Role of Pions in Nuclei and Experimental Characteristics
Relativistic Chiral Mean Field Model for Finite Nuclei
Relativistic extended chiral mean field model for finite nuclei
Daejeon16 for light nuclei
Three-nucleon reactions with chiral forces
The off-shell Coulomb-like amplitude in momentum space
Nuclear Forces - Lecture 3 -
Nuclear Forces - Lecture 5 -
Kazuo MUTO Tokyo Institute of Technology
Samara State University, Samara, Russia
Ab-initio nuclear structure calculations with MBPT and BHF
Institute of Modern Physics Chinese Academy of Sciences
Presentation transcript:

Relativistic Faddeev calculations for elastic Nd scattering with Kharkov potential   H. Kamada (Kyushu Institute of Technology, Japan) H. Witala , J. Golak, R. Skibinski (Jagiellonian University, Poland) O. Shebeko , A. Arslanaliev (Kharkov Institute of Physics and Technology, NAS of Ukraine, Kharkiv, Ukraine) N APFB 2017 2017 –AUG-24~30, Guilin, CHINA N P

Outline  §1 Motivation §2 Relativistic Calculation §3 Identification to the relativistic potential §4 Boost Correction §5 Kharkov potential §6 Triton binding energy §7 Nd elastic scattering §8 Summary and Outlook

§1 Motivation  The nonrelativistic theoretical prediction of the Nd scattering backward cross section beyond 200MeV/u is getting to be poor even including the 3-body force (FM type). What is missing?

Phys. Rev. C 57, 2111 (1998)

§2 Relativistic Calculation §2 Relativistic Calculation There are essentially two different approaches to relativistic three-nucleon calculation: ① a manifestly covariant scheme linked to a field theoretical approach. ② a scheme based on relativistic quantum mechanics on spacelike hypersurfaces (including the light front) in Minkowski space.

B. Bakamjian, L.H. Thomas, Phys. Rev. 92, 1300 (1952). Within the second scheme② the relativistic Hamiltonian for on-the-mass-shell particles consists of relativistic kinetic energies and two- and many-body interactions including their boost corrections, which are dictated by the Poincare algebra. ’

What is the boost correction? A potential in an arbitrary moving frame (q≠0) is different, which enters a relativistic Lippmann-Schwinger equation. q≠0 Vnr Vnr (q=0) (q=0)≠  (q≠0)

Two-body t-matrix Nonrelativistic LS eq. Relativistic LS eq. ^ ^ E - k’’2/m Relativistic LS eq. ^ ^ Boosted relativisitic LS eq.

Two-body t-matrix Nonrelativistic LS eq. Relativistic LS eq. ^ ^ E - k’’2/m Relativistic LS eq. ^ ^ Boosted relativisitic LS eq.

Two-body t-matrix Nonrelativistic LS eq. Relativistic LS eq. ^ ^ E - k’’2/m Relativistic LS eq. ^ ^ Boosted relativisitic LS eq.

Two-body t-matrix Nonrelativistic LS eq. Relativistic LS eq. ^ ^ E - k’’2/m Relativistic LS eq. ^ ^ Boosted relativisitic LS eq.

§3 Identification to the relativistic potential

“Realistic NN potential” ΧPT,AV18, CDBonn, Nijmegen etc start Relativistic potential? ΧPT,AV18, CDBonn, Nijmegen etc no Identification Type 1 Identification Type 2 yes     Boost potential   Enter the relativistic Faddeev equation Output : Triton binding energy Pd scattering end

§3 Identification to the relativistic potential   Few-Body Syst. (2010) 48, 109

: (pseudo) Relativistic potential Type 1 “Scale-transformation from nonrelativity to relativity ” : (pseudo) Relativistic potential Scale transformation Phys. Rev. Lett. 80, 2457(1998)

Two-body t-matrix Nonrelativistic LS eq. Relativistic LS eq. ^ ^ E - k’’2/m Relativistic LS eq. ^ ^

Coester-Pieper-Serduke (CPS) Type 2 Coester-Pieper-Serduke (CPS) (PRC11, 1 (1975))

Sandwiching it between <k | and |k’>, we get nr Sandwiching it between <k | and |k’>, we get

Physics Letters B655, 119-125 (2007), (nucl-th/0703010) Iteration Method Physics Letters B655, 119-125 (2007), (nucl-th/0703010)

Convergence to the iteration

§4 Boost Correction Boosted Hamiltonian in 2N system   Physics Letters B655, 119-125 (2007), (nucl-th/0703010)

Real Part q=0 fm-1 q=10 fm-1 q=20 fm-1 CD-Bonn potential 1S0 partial wave E=350MeV Half-shell t-matrix

Imaginary Part q=20 fm-1 q=10 fm-1 CD-Bonn potential 1S0 partial wave E=350MeV Half-shell t-matrix q=0 fm-1

§5 Kharkov potential

I. Dubovyk, O. Shebeko, Few-Body Sys. 48, 109 (2010). Kharkov Potential I. Dubovyk, O. Shebeko, Few-Body Sys. 48, 109 (2010).

Two-body t-matrix Nonrelativistic LS eq. Relativistic LS eq. ^ ^ E - k’’2/m Relativistic LS eq. ^ ^ Boosted relativisitic LS eq.

ΧPT,AV18, CDBonn, Nijmegen etc Kharkov start Boost potential Relativistic potential? ΧPT,AV18, CDBonn, Nijmegen etc no Identification Type 1 Identification Type 2 yes     Kharkov Boost potential   Enter the relativistic Faddeev equation Output : Triton binding energy Pd scattering end

Deuteron Wave Function S-Wave pψ(p)[fm ] 1/2 Solid:Kharkov Dotted: CDBonn -1 p [fm ]

Deuteron Wave Function D-Wave pψ(p)[fm ] 1/2 Solid:Kharkov Dotted: CDBonn -1 p [fm ]

§6 Triton Binding Energy Type 1 Type 2 Coester-Pieper-Serduke (CPS) Type 0 no identification “Scale-transform it from nonrelativity to relativity ” (ST)

Triton binding energies (Type 1) MeV Rel. Nonrel. Phys. Rev. C66, 044010 (2002) 5ch calculation

Triton binding energies (Type 2) MeV Rel. Nonrel. -6.97 -8.22 -7.58 -7.90 -7.68 -7.59 -7.02 -8.33 -7.65 -8.00 -7.76 -7.66 0.05 0.11 0.07 0.10 0.08 5ch calculation EPJ Web of Conferences 3, 05025 (2010)

Triton binding energies (Type 0) of Kharkov potential Relativistic Nonrelativistic Difference Kharkov(UCT1)  -7.42 (-7.49) 0.07 AV18 (-7.59) -7.66 CD-Bonn (-8.22) -8.33 0.11 Type 2 5ch calculation H.Kamada, O. Shebeko, A. Arslanaliev, Few-Body Syst. 58 (2017), 70.

Triton binding energies (Type2) of N4LO and Kharkov pot. (MeV) Regularization  Relativistic Nonrelativistic Difference χEFT R=0.9 (-7.706) -7.832 0.126 χEFT R=1.0 (-7.748) -7.867 0.119 χEFT R=1.1 (-7.733) -7.848 0.115 CD-Bonn (-8.150) -8.249 0.099 Kharkov(UCT1) -7.460 (-7.528) 0.068 Kharkov(UCT2) -7.981 (-8.099) 0.118 N4LO pot. : E. Epelbaum et al., Eur. Phys. J. A51, 53 (2015) ; E. Epelbaum et al., Phys. Rev. Lett. 115, 122301 (2015) 42ch calculation

Triton Binding Energy Type1 Type2 [MeV] Kharkov(UCT1) Kharkov(UCT2) ←Exp. CDBonn [MeV]

§7 Elastic Nd scattering §7 Elastic Nd scattering

Comparison I Relativistic and non-relativistic (without 3NF) Kharkov potential (UCT1) dσ/dΩ differential cross section Ay proton vector polarization iT11 deuteron vector polarization T20, T21, T22 deuteron vector polarization Ep=5,13,65,135 MeV

5MeV 13MeV 65MeV 135MeV

5MeV 13MeV 65MeV 135MeV

13MeV 5MeV 65MeV 135MeV

13MeV 5MeV 65MeV 135MeV

5MeV 13MeV 65MeV 135MeV

5MeV 13MeV 65MeV 135MeV

5MeV 13MeV 65MeV 135MeV

Phys. Rev. C 57, 2111 (1998)

Θc.m.=180deg

Comparison II CDBonn (rel.) Kharkov (UCT1) Kharkov (UCT2)

5MeV 13MeV 65MeV 135MeV CDBonn UCT1 UCT2

5MeV 13MeV 65MeV 135MeV CDBonn UCT1 UCT2

Ay puzzle Koike’s conjecture 3P0 3P1 3P2 NN phase shift (P-wave) 50MeV Partial wave Nijmegen DATA CDBonn Bonn B UCT1 UCT2 Effect on Ay (UCT1,UCT2) 3P0 10.70 10.79 12.24 12.16 11.78 ↓,↓ 3P1 -8.25 -8.23 -8.77 -8.58 -7.82 -,- 3P2 5.89 5.91 6.14 6.00 4.77 -, ↓ The NN phase shift is not well described yet !

5MeV 13MeV CDBonn UCT1 UCT2 65MeV 135MeV

5MeV 13MeV CDBonn UCT1 UCT2 65MeV 135MeV

5MeV CDBonn UCT1 UCT2 13MeV 65MeV 135MeV

5MeV 13MeV 65MeV 135MeV CDBonn UCT1 UCT2

§8 Summary and Outlook ・Kharkov potential: ⇒Kharkov potential gives relativistic potential directly. (No need identifications) start Relativistic potential? Boost potential Enter the relativistic Faddeev equation Identification Type 1   Identification Type 2 yes no end Output : Triton binding energy Pd scattering Kharkov ΧPT,AV18, CDBonn, Nijmegen etc

§8 Summary and Outlook ・Triton binding energies: ⇒ Chiral potentials (N4LO) give similar results (-7.71~-7.73MeV) as CDBonn potential (-8.15MeV). ⇒ Kharkov potential (UCT1) needs not any identification and gives -7.460MeV. ⇒ Kharkov potential has a rather small difference between the relativistic binding energies and the nonrelativistic one. ⇒We need much 3 body force to reach data (8.48MeV).

§8 Summary and Outlook ・ Relativistic results for Nd elastic scattering: ⇒ The first Nd scattering calculation for Kharkov pot. ⇒ In the low energy region (<65MeV) the results of Kharkov potential reasonably agree with the CDBonn potential case except for Ay and iT11. ⇒ The phase shift of P-wave is not enough described. ⇒ Beyond the intermediate energy region (>65MeV) the prediction of Kharkov potential is getting to differ from the CDBonn potential case. However, it is difficult to distinguish whether the difference causes from relativistic effect or from its own parameterization.

§8 Summary and Outlook ・ Relativistic results for Nd elastic scattering: ⇒ 3body force was not included. ⇒ Kharkov potential gains less triton binding energy |Eb| than CDBonn potential case, therefore, we expect larger contribution from 3 body force.

CDBonn Nonrel Rel. Nonrel+3NF Rel.+3NF

dσ/d Ω [mb/sr] 150 400 Θc.m.[deg]