Date of download: 10/10/2017 Copyright © ASME. All rights reserved.

Slides:



Advertisements
Similar presentations
Date of download: 5/28/2016 Copyright © ASME. All rights reserved. From: Analysis and Experimental Estimation of Nonlinear Dispersion in a Periodic String.
Advertisements

Date of download: 5/29/2016 Copyright © ASME. All rights reserved. From: Dual-Functional Energy-Harvesting and Vibration Control: Electromagnetic Resonant.
Date of download: 6/9/2016 Copyright © ASME. All rights reserved. From: In Situ Active Noise Cancellation Applied to Magnetic Resonance Imaging J. Vib.
Date of download: 6/20/2016 Copyright © ASME. All rights reserved.
Date of download: 6/21/2016 Copyright © ASME. All rights reserved. From: A Physics-Based Friction Model and Integration to a Simple Dynamical System J.
Date of download: 6/27/2016 Copyright © ASME. All rights reserved. From: Optical Microscopy-Aided Indentation Tests J. Eng. Mater. Technol. 2008;130(1):
Date of download: 7/8/2016 Copyright © ASME. All rights reserved. From: An Approximate Formula to Calculate the Restoring and Damping Forces of an Air.
Date of download: 7/10/2016 Copyright © ASME. All rights reserved. From: Three-Dimensional Modeling of Supine Human and Transport System Under Whole-Body.
Date of download: 9/17/2016 Copyright © ASME. All rights reserved. Analytical Solutions to H 2 and H ∞ Optimizations of Resonant Shunted Electromagnetic.
Date of download: 9/17/2016 Copyright © ASME. All rights reserved. From: Frequency Tuning of a Nonlinear Electromagnetic Energy Harvester J. Vib. Acoust.
From: Wave Propagation in Sandwich Structures With Multiresonators
Date of download: 10/1/2017 Copyright © ASME. All rights reserved.
Date of download: 10/2/2017 Copyright © ASME. All rights reserved.
Date of download: 10/5/2017 Copyright © ASME. All rights reserved.
From: Increasing the Efficiency of Energy Scavengers by Magnets
From: Nonlinear Vibration of Gears With Tooth Surface Modifications
Date of download: 10/10/2017 Copyright © ASME. All rights reserved.
Date of download: 10/11/2017 Copyright © ASME. All rights reserved.
From: Structural and Acoustic Behavior of Chiral Truss-Core Beams
Date of download: 10/13/2017 Copyright © ASME. All rights reserved.
Date of download: 10/14/2017 Copyright © ASME. All rights reserved.
Date of download: 10/16/2017 Copyright © ASME. All rights reserved.
Date of download: 10/17/2017 Copyright © ASME. All rights reserved.
Date of download: 10/18/2017 Copyright © ASME. All rights reserved.
Date of download: 10/19/2017 Copyright © ASME. All rights reserved.
From: Existence of Solutions of Riccati Differential Equations
Date of download: 10/24/2017 Copyright © ASME. All rights reserved.
Date of download: 10/25/2017 Copyright © ASME. All rights reserved.
Date of download: 10/25/2017 Copyright © ASME. All rights reserved.
Date of download: 10/25/2017 Copyright © ASME. All rights reserved.
Date of download: 10/26/2017 Copyright © ASME. All rights reserved.
From: Automatically Creating Design Models From 3D Anthropometry Data
Date of download: 10/28/2017 Copyright © ASME. All rights reserved.
Date of download: 10/31/2017 Copyright © ASME. All rights reserved.
Date of download: 10/31/2017 Copyright © ASME. All rights reserved.
Date of download: 11/1/2017 Copyright © ASME. All rights reserved.
Date of download: 11/2/2017 Copyright © ASME. All rights reserved.
From: Hopf Instabilities in Free Piston Stirling Engines
Date of download: 11/3/2017 Copyright © ASME. All rights reserved.
From: A New Design of Horizontal Electro-Vibro-Impact Devices
Date of download: 11/4/2017 Copyright © ASME. All rights reserved.
Date of download: 11/5/2017 Copyright © ASME. All rights reserved.
From: Accuracy of Wearable Sensors for Estimating Joint Reactions
Date of download: 11/7/2017 Copyright © ASME. All rights reserved.
Date of download: 11/7/2017 Copyright © ASME. All rights reserved.
Date of download: 11/8/2017 Copyright © ASME. All rights reserved.
Date of download: 11/9/2017 Copyright © ASME. All rights reserved.
Date of download: 11/11/2017 Copyright © ASME. All rights reserved.
Date of download: 11/13/2017 Copyright © ASME. All rights reserved.
Date of download: 11/14/2017 Copyright © ASME. All rights reserved.
Date of download: 11/15/2017 Copyright © ASME. All rights reserved.
Date of download: 11/16/2017 Copyright © ASME. All rights reserved.
Date of download: 12/15/2017 Copyright © ASME. All rights reserved.
From: Design of Axially Graded Columns Under a Central Force
Date of download: 12/20/2017 Copyright © ASME. All rights reserved.
Date of download: 12/24/2017 Copyright © ASME. All rights reserved.
Date of download: 12/24/2017 Copyright © ASME. All rights reserved.
Date of download: 12/24/2017 Copyright © ASME. All rights reserved.
From: Reversibility of Power-Split Transmissions
Date of download: 12/27/2017 Copyright © ASME. All rights reserved.
Date of download: 12/29/2017 Copyright © ASME. All rights reserved.
Date of download: 12/29/2017 Copyright © ASME. All rights reserved.
Date of download: 12/31/2017 Copyright © ASME. All rights reserved.
From: The Multimodal Dynamics of a Walnut Tree: Experiments and Models
From: The Multimodal Dynamics of a Walnut Tree: Experiments and Models
Date of download: 1/2/2018 Copyright © ASME. All rights reserved.
Date of download: 1/2/2018 Copyright © ASME. All rights reserved.
From: Variational Integrators for Structure-Preserving Filtering
Date of download: 1/23/2018 Copyright © ASME. All rights reserved.
Date of download: 3/2/2018 Copyright © ASME. All rights reserved.
Presentation transcript:

Date of download: 10/10/2017 Copyright © ASME. All rights reserved. From: On the Performance of a Two-Stage Vibration Isolation System Which has Geometrically Nonlinear Stiffness J. Vib. Acoust. 2014;136(6):064501-064501-5. doi:10.1115/1.4028379 Figure Legend: Comparison of the transmissibility of a single-stage linear isolator and a two-stage linear isolator as a function of nondimensional frequency. The mass ratio is 0.2, the upper stiffness is equal to the lower stiffness, and the damping ratio for the upper and lower stages is 0.01. Single-stage linear isolator, red solid line; two-stage linear isolator, blue dashed line.

Date of download: 10/10/2017 Copyright © ASME. All rights reserved. From: On the Performance of a Two-Stage Vibration Isolation System Which has Geometrically Nonlinear Stiffness J. Vib. Acoust. 2014;136(6):064501-064501-5. doi:10.1115/1.4028379 Figure Legend: Schematic of the two-stage nonlinear isolation system. (a) Actual system and (b) equivalent lumped parameter model. The mass m1 is the suspended (primary) mass and m2 is the intermediate (secondary) mass.

Date of download: 10/10/2017 Copyright © ASME. All rights reserved. From: On the Performance of a Two-Stage Vibration Isolation System Which has Geometrically Nonlinear Stiffness J. Vib. Acoust. 2014;136(6):064501-064501-5. doi:10.1115/1.4028379 Figure Legend: Illustration of the HBM and numerical solution for force and displacement transmissibility when the upper and lower horizontal stiffness are fixed at k∧h1 = k∧h2 = 1.17 and l∧ = 0.7, F∧e = F∧emax, X∧e = X∧emax, μ = 0.2, k∧v2 = 1, and ζ1 = ζ2 = 0.01. HBM solution: force transmissibility (blue solid line), displacement transmissibility (red dashed line). Numerical solution obtained by direct numerical integration of Eqs. (2) and (8) (decreasing frequency: black and green “+”; increasing frequency: black and green “o”).

Date of download: 10/10/2017 Copyright © ASME. All rights reserved. From: On the Performance of a Two-Stage Vibration Isolation System Which has Geometrically Nonlinear Stiffness J. Vib. Acoust. 2014;136(6):064501-064501-5. doi:10.1115/1.4028379 Figure Legend: Plots of force and displacement transmissibilities of the two-stage nonlinear isolator with the same parameters as in Fig. 3, showing the effects of changing the horizontal stiffness, k∧h1 and k∧h2. (a) and (b) Force transmissibility, (c) and (d) displacement transmissibility: (a) and (c), Effects of setting k∧h1 = 0 and adjusting k∧h2: red dashed line, k∧h2 = 0; black dashed–dotted line, k∧h2 = 0.7; green dotted line, k∧h2 = 1; blue solid line, k∧h2 = 1.17; (b) and (d), Effect of fixing k∧h2 = 1.17 and adjusting k∧h1: blue solid line, k∧h1 = 0; green dotted line, k∧h1 = 0.7; black dashed–dotted line, k∧h1 = 1; red dashed line, k∧h1 = 1.17.