Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H

Slides:



Advertisements
Similar presentations
Microsolvation of  -propiolactone as revealed by Chirped-Pulse Fourier Transform Microwave Spectroscopy Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski,
Advertisements

CHIRPED-PULSE FOURIER-TRANSFORM MICROWAVE SPECTROSCOPY OF THE PROTOTYPICAL C-H…π INTERACTION: THE BENZENE…ACETYLENE WEAKLY BOUND DIMER Nathan W. Ulrich,
1 THz vibration-rotation-tunneling (VRT) spectroscopy of the water (D 2 O) 3 trimer : --- the 2.94THz torsional band L. K. Takahashi, W. Lin, E. Lee, F.
Jason J. Pajski, Matt Logan, Brian C. Dian 1, Gordon G. Brown, Kevin O. Douglass, Richard D. Suenram and Brooks H. Pate Department of Chemistry, University.
The Search is Over: Design and Applications of a Chirped Pulse Fourier Transform Microwave (CP- FTMW) Spectrometer for Ground State Rotational Spectroscopy.
ROTATIONAL SPECTRA OF THE TRIFLUORO ETHANOL (TFE) -WATER CLUSTERS AND THE TFE DIMERS Javix Thomas and Yunjie Xu Department of Chemistry, University of.
Construction of a 480 MHz Chirped-Pulse Fourier-Transform Microwave Spectrometer: The Rotational Spectra of Divinyl Silane and 3,3-Difluoropentane Daniel.
Galen Sedo, Jamie L. Doran, Shenghai Wu, Kenneth R. Leopold Department of Chemistry, University of Minnesota A Microwave Determination of the Barrier to.
Chirped-pulsed FTMW Spectrum of 4-Fluorobenzyl Alcohol
Two-Dimensional Chirped-Pulse Fourier Transform Microwave Spectroscopy Amanda Shirar June 22, th OSU International Symposium on Molecular Spectroscopy.
1 Broadband Chirped-Pulse Fourier- Transform Microwave (CP-FTMW) Spectroscopic Investigation of the Structures of Three Diethylsilane Conformers Amanda.
Gas Phase Conformational Distributions
Microwave Spectrum of Hydrogen Bonded Hexafluoroisopropanol  water Complex Abhishek Shahi Prof. E. Arunan Group Department of Inorganic and Physical.
The Low Frequency Broadband Fourier Transform Microwave Spectroscopy of Hexafluoropropylene Oxide, CF 3 CFOCF 2 Lu Kang 1, Steven T. Shipman 2, Justin.
Microwave Spectroscopic Investigations of the C—H…  Containing Complexes CH 2 F 2 …Propyne and CH 2 ClF…Propyne Rebecca A. Peebles, Sean A. Peebles, Cori.
THE PURE ROTATIONAL SPECTRA OF THE TWO LOWEST ENERGY CONFORMERS OF n-BUTYL ETHYL ETHER. B. E. Long, G. S. Grubbs II, and S. A. Cooke RH13.
Chirped-pulse, FTMW spectroscopy of the lactic acid-H 2 O system Zbigniew Kisiel, a Ewa Białkowska-Jaworska, a Daniel P. Zaleski, b Justin L. Neill, b.
Microwave Spectrum and Molecular Structure of the Argon-(E )-1-Chloro-1,2-Difluoroethylene Complex Mark D. Marshall, Helen O. Leung, Hannah Tandon, Joseph.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
Molecular Stark Effect Measurements in Broadband Chirped-Pulse Fourier Transform Microwave (CP-FTMW) Spectrometers Leonardo Alvarez-Valtierra, 1 Steven.
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
Rotational Spectra Of Cyclopropylmethyl Germane And Cyclopropylmethyl Silane: Dipole Moment And Barrier To Methyl Group Rotation Rebecca A. Peebles, Sean.
Microwave Spectrum of the Ethanol-Water Dimer
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
S TRUCTURE D ETERMINATION AND CH···F I NTERACTIONS IN H 2 C=CHF···H 2 C=CF 2 B Y F OURIER - T RANSFORM M ICROWAVE S PECTROSCOPY Rachel E. Dorris, Rebecca.
Broadband Microwave Spectroscopy to Study the Structure of Odorant Molecules and of Complexes in the Gas Phase Sabrina Zinn, Chris Medcraft, Thomas Betz,
Chirped-Pulse Microwave Spectroscopy in the Undergraduate Chemistry Curriculum Sydney Gaster, Taylor Hall, Sean Arnold, Deondre Parks, Gordon Brown Department.
Microwave and Ab Initio Investigations of CHCl 2 F-OCS and Related Hydrochlorofluorocarbon Complexes Rebecca A. Peebles and Amanda L. Steber Department.
The Rotational Spectrum of the Water–Hydroperoxy Radical (H 2 O–HO 2 ) Complex Kohsuke Suma, Yoshihiro Sumiyoshi, and Yasuki Endo Department of Basic Science,
Steven T. Shipman, 1 Leonardo Alvarez-Valtierra, 1 Justin L. Neill, 1 Brooks H. Pate, 1 Alberto Lesarri, 2 and Zbigniew Kisiel 3 Design and performance.
CRISTOBAL PEREZ, MARINA SEKUTOR, ANDREY A
Max Planck Institute for the Structure and Dynamics of Matter
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H
ROTATIONAL SPECTROSCOPY OF THE METHYL GLYCIDATE-WATER COMPLEX
Christopher T. Dewberry, Garry S
Structure and tunneling dynamics of gauche-1,3-butadiene
72nd International Symposium on Molecular Spectroscopy (ISMS 2017)
Mark D. Marshall, Helen O. Leung, Craig J. Nelson & Leonard H. Yoon
1Kanagawa Institute of Technology 3Georgia Southern University
OCS trimer and tetramer: Calculated structures and infrared spectra
L. Evangelisti,a,c C. Perez,b,c B.H. Patec
A.J. Barclay, S. Sheybani-Deloui, N. Moazzen-Ahmadi
SEVEN CONFORMERS OF PIPECOLIC ACID IDENTIFIED IN THE GAS PHASE
Characterization of Intermolecular Interactions in the
G. S. Grubbs II*, S. A. Cooke⧧, and Stewart E. Novick*,
Jacob T. Stewart and Bradley M
The CP-FTMW Spectrum of Verbenone
The CP-FTMW Spectrum of Bromoperfluoroacetone
CHIRPED PULSE AND CAVITY FOURIER TRANSFORM MICROWAVE (CP-FTMW AND FTMW) INVESTIGATIONS INTO 3-BROMO-1,1,1,2,2-PENTAFLUOROPROPANE; A MOLECULE OF ATMOSPHERIC.
The Effect of Protic Acid Identity on the Structures of Complexes with Vinyl Chloride: Fourier Transform Microwave Spectroscopy and Molecular Structure.
CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF
Microwave spectra of Ar...AgI and H2O...AgI produced by laser ablation
CAITLIN BRAY CARA RAE RIVERA E. A. ARSENAULT DANIEL A. OBENCHAIN
A STUDY OF THE FORMAMIDE-(H2O)3 COMPLEX BY MICROWAVE SPECTROSCOPY
Microwave spectra of 1- and 2-bromobutane
G. S. Grubbs IIa, Derek S. Frankb, Daniel A. Obenchainb, S. A
THE STRUCTURE OF PHENYLGLYCINOL
Fourier transform microwave spectra of n-butanol and isobutanol
RH12, 70th International Symposium on Molecular Spectroscopy
Ashley M. Anderton, Cori L. Christenholz, Rachel E. Dorris, Rebecca A
The rotational spectrum of the urea isocyanic acid complex
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
ASSIGNMENT OF THE PERFLUOROPROPIONIC ACID-FORMIC ACID COMPLEX AND THE DIFFICULTIES OF INCLUDING HIGH Ka TRANSITIONS Daniel A. Obenchain, Eric A. Arsenault,
Michal M. Serafin, Sean A. Peebles
John Mullaney Newcastle University
Halogen bonding vs hydrogen bonding: CHF2INH3 vs CHF2IN(CH3)3
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
COMPREHENSIVE ANALYSIS OF INTERSTELLAR
Presentation transcript:

Weak Interactions and CO2  Microsolvation in the cis-1,2-difluoroethylene...CO2  Complex Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H. Pate,b William C. Trendell,a Sean A. Peeblesa a Department of Chemistry, Eastern Illinois University, Charleston, IL, USA b Department of Chemistry, University of Virginia, Charlottesville, VA, USA

Why CO2? Weak hydrogen bonding Designing approaches to CO2 sequestration Properties of supercritical fluid Microsolvation Trifluoroethylene (TFE) Difluoroethylene (1,1-DFE) Fluoroethylene (FE) VF-CO2: C. L. Christenholz, et al., J. Phys. Chem. A, 118, (2014), 8765. DFE-CO2: A. M. Anderton, et al., J. Phys. Chem. A, 120, (2016), 247. TFE-CO2: R. Dorris, et al, J. Phys. Chem. A, 120, (2016), 7865.

Next Steps… Additional dimers Move towards larger clusters

Predicted DFE-CO2 Structure Observed side-bonded structures Initial prediction for DFE-CO2 Gaussian 09: MP2/6-311++G(2d,2p)

Oscilloscope (for data collection) Tektronix TDS5054B 500 MHz Oscilloscope AFG3251 Function Generator (0-240 MHz) HP8673G MW Synthesizer 2-26.5 GHz Molecular Expansion Vacuum Chamber 10 W Solid State Amp Picoammeter Gas sample injected Electron gun power Diffusion pump Supersonic nozzle Oscilloscope (for data collection) Reduced Bandwidth Chirped-Pulse Fourier-Transform Microwave (CP-FTMW) Spectrometer 480 MHz bandwidth, scan in 240 MHz steps Calculate absolute frequencies and assemble into full 11 GHz spectrum using LabVIEW Scan a full (10k average) spectrum in 1 day D. A. Obenchain, A. A. Elliott, A.L. Steber, R. A. Peebles, S. A. Peebles, C. J. Wurrey, G. A. Guirgis, J. Mol. Spectrosc., 261, (2010), 35.

Assignment Process Observed “Stacked” prediction “Side” prediction

Observed a c a c Predicted a c 10000 9000 8000 Fitted

Fitted Constants 0+ 0- A / MHz 3810.154(14) 3809.984(14) B / MHz   0+ 0- A / MHz 3810.154(14) 3809.984(14) B / MHz 1614.4404(25) 1614.4991(21) C / MHz 1456.786(14) 1456.867(14) DJ / kHz 3.490(10) 3.451(10) DJK / kHz 14.940(67) 15.216(60) DK / kHz -12.02(41) dJ / kHz 0.3322(70) dK / kHz -12.72(32) Fac / MHz 167.828(97) DE / MHz 333.2433(19) N 51 RMS / kHz 2.2

Fitted Constants 0+ 0- A / MHz 3810.154(14) 3809.984(14) B / MHz   0+ 0- A / MHz 3810.154(14) 3809.984(14) B / MHz 1614.4404(25) 1614.4991(21) C / MHz 1456.786(14) 1456.867(14) DJ / kHz 3.490(10) 3.451(10) DJK / kHz 14.940(67) 15.216(60) DK / kHz -12.02(41) dJ / kHz 0.3322(70) dK / kHz -12.72(32) Fac / MHz 167.828(97) DE / MHz 333.2433(19) N 51 RMS / kHz 2.2

(Very) preliminary barrier = 42 cm-1 Fitted Constants   0+ 0- A / MHz 3810.154(14) 3809.984(14) B / MHz 1614.4404(25) 1614.4991(21) C / MHz 1456.786(14) 1456.867(14) DJ / kHz 3.490(10) 3.451(10) DJK / kHz 14.940(67) 15.216(60) DK / kHz -12.02(41) dJ / kHz 0.3322(70) dK / kHz -12.72(32) Fac / MHz 167.828(97) DE / MHz 333.2433(19) N 51 RMS / kHz 2.2 (Very) preliminary barrier = 42 cm-1

Structure 0+ 0- A / MHz 3810.154(14) 3809.984(14) 3734.7 8002.3   0+ 0- A / MHz 3810.154(14) 3809.984(14) 3734.7 8002.3 B / MHz 1614.4404(25) 1614.4991(21) 1559.1 868.2 C / MHz 1456.786(14) 1456.867(14) 1403.4 783.2 Paa / u Å2 263.655(2) 263.637(2) 274.5 582.1 Pbb / u Å2 83.259(2) 83.258(2) 85.6 63.2 Pcc / u Å2 49.382(2) 49.388(2) 49.7 0.0 ma / D 2.13(3) 2.2 0.02 mb / D 0.00 2.4 mc / D 1.13(4) 1.4 Gaussian 09: MP2/6-311++G(2d,2p)

Structure Paa for DFE = 85.30534(4) u Å2 m for DFE = 2.42 D 0+ 0-   0+ 0- A / MHz 3810.154(14) 3809.984(14) 3734.7 8002.3 B / MHz 1614.4404(25) 1614.4991(21) 1559.1 868.2 C / MHz 1456.786(14) 1456.867(14) 1403.4 783.2 Paa / u Å2 263.655(2) 263.637(2) 274.5 582.1 Pbb / u Å2 83.259(2) 83.258(2) 85.6 63.2 Pcc / u Å2 49.382(2) 49.388(2) 49.7 0.0 ma / D 2.13(3) 2.2 0.02 mb / D 0.00 2.4 mc / D 1.13(4) 1.4 mtot / D 2.41(5) Paa for DFE = 85.30534(4) u Å2 m for DFE = 2.42 D Monomer rotational constants: N. C. Craig, et al, Int. J. Quantum Chem., 95, (2003), 837. Monomer dipole moment: V. W. Laurie, J. Chem. Phys., 34, (1961), 291. Gaussian 09: MP2/6-311++G(2d,2p)

What’s next? Larger clusters… (d) (e) (a) (b) (c) (i) (h) (f) (g) What’s next? Symmetry adapted perturbation theory (SAPT) Better understanding of energetics Larger clusters… Figure adapted from: R. Dorris, et al, J. Phys. Chem. A, 120, (2016), 7865.

Ees Eind Edisp Eex ESAPT EMP2 (BSSE) X…CO2 [kJ mol-1 ] X = Ees Eind Edisp Eex ESAPT EMP2 (BSSE) FE (side) –8.33 (52.0%) –1.34 (8.3%) –6.36 (39.7%) 8.33 –7.70 –6.41 FE (top) –7.78 (49.7%) –1.30 (8.2%) –6.61 (42.1%) 8.03 –7.66 –6.30 FE (stacked) –6.65 (42.5%) –0.96 (6.1%) –8.02 (51.3%) 8.43 –7.19 –6.44   1,1-DFE (top) –5.69 (44.8%) –1.00 (7.8%) –6.02 (47.4%) 6.49 –6.22 –5.10 1,1-DFE (stacked) –4.43 (34.8%) –0.78 (6.1%) –7.50 (59.1%) 7.35 –5.35 –4.86 cis-1,2-DFE (side) –7.91 (51.0%) –1.34 (8.6%) –6.28 (40.5%) 7.99 –7.54 –6.33 cis-1,2-DFE (stacked) –7.29 (44.6%) –1.11 (6.8%) –7.96 (48.7%) 8.38 –7.97 –6.81 TFE (side) –7.61 (50.2%) –1.30 (8.5%) –6.23 (41.3%) 7.82 –7.32 –6.16 TFE (top) –6.11 (45.7%) –1.21 (9.0%) –6.07 (45.3%) 6.78 –6.61 –5.39 TFE (stacked) –5.84 (41.2%) –0.87 (6.1%) –7.47 (52.7%) 7.52 –6.66 –5.69 Table adapted from: R. Dorris, et al, J. Phys. Chem. A, 120, (2016), 7865.

Building up CO2 solvation shells 363 cm-1 0 cm-1 319 cm-1 24 cm-1 MP2/6-311++G(2d,2p) using Gaussian 09

New Fluoroethylene-CO2 Scan – 1 million FIDs FE-only lines cut

  Top-stack Side-stack Stack Side-top A / MHz 1618.3 1734.3 2933.3 1626.8 B / MHz 1173.9 1107.4 643.5 922.9 C / MHz 881.2 808.4 609.4 588.8 Paa / u Å2 345.9 395.1 721.2 547.6 Pbb / u Å2 227.7 230.1 108.1 310.7 Pcc / u Å2 84.6 61.3 64.2 0.0 ma / D 1.1 0.8 0.03 mb / D 1.0 0.5 1.5 mc / D 0.7 DE / cm-1 24 319 363 1552.1048(9) 1169.4589(4) 847.2575(3) 351.5135(3) 244.9746(3) 80.6342(3) Strongest Less Strong Weak 1660.3513(1) 1109.7647(1) 785.7775(1) 397.08505(7) 246.07289(7) 58.30788(7) Medium Stronger

Summary and Conclusions cis-1,2-DFE-CO2 is nonplanar CO2 inversion motion Work using Meyer’s 1-dimensional model to determine barrier is in progress Two VF-CO2-CO2 trimers observed Nearly isoenergetic Tetramers?

Acknowledgements National Science Foundation Pate Group (UVa) RUI1214070 (2012-2017) RUI1664900 (2017-2020) Pate Group (UVa) Eastern Illinois University spcat 

TRIMER2 – prelim fit 10000 A / /MHz 1660.35130(13) 1 20000 B / /MHz 1109.76472(10) 2 30000 C / /MHz 785.77746(10) 3 200 DJ / /MHz -0.0015444(41) 4 1100 DJK / /MHz 0.0003469(68) 5 2000 DK / /MHz -0.004195(14) 6 40100 dj / /kHz -0.37274(76) 7 41000 dk / /kHz -1.4705(55) 8 TRIMER1 – prelim fit 10000 A / /MHz 1552.10482(85) 1 20000 B / /MHz 1169.45892(35) 2 30000 C / /MHz 847.25746(28) 3 200 DJ / /MHz -0.002092(10) 4 1100 DJK / /MHz 0.003866(54) 5 2000 DK / /MHz -0.00724(17) 6 40100 dj / /kHz -0.5918(76) 7 Trimer spectra uncut

  I Side-top II End-top III Stack IV Side-end A / MHz 1618.3 1734.3 2933.3 1626.8 B / MHz 1173.9 1107.4 643.5 922.9 C / MHz 881.2 808.4 609.4 588.8 Paa / u Å2 345.9 395.1 721.2 547.6 Pbb / u Å2 227.7 230.1 108.1 310.7 Pcc / u Å2 84.6 61.3 64.2 0.0 ma / D 1.1 0.8 0.03 mb / D 1.0 0.5 1.5 mc / D 0.7 DE / cm-1 24 319 363

Trimer! I II Observed A / MHz 1623.4 1626.8 1552.10482(85) B / MHz   I II Observed A / MHz 1623.4 1626.8 1552.10482(85) B / MHz 1171.2 922.9 1169.45892(35) C / MHz 881.4 588.8 847.25746(28) Paa / u Å2 346.8 547.6 351.51351(25) Pbb / u Å2 226.6 310.7 244.97460(25) Pcc / u Å2 84.7 0.0 80.63421(25) ma / D 1.2 0.03 Strongest mb / D 1.0 1.5 Less Strong mc / D 0.7 Weak DE / cm-1 363 I II

Table 4 SAPT interaction energy decomposition resultsa (kJ mol–1) and percentage contribution to the attractive interaction (in parentheses) for fluorinated ethylene complexes with CO2. Also included are supermolecular interaction energies (EMP2) and pseudodiatomic approximation (EB) values (where available from experimental studies). See Figure 3 for structures. a Ees is the electrostatic, Eind the induction, Edisp the dispersion and Eex the exchange-repulsion contributions to the overall SAPT interaction energy (ESAPT). b EMP2 is the BSSE corrected supermolecular interaction energy: EMP2 = E(A…B) – E(A) – E(B), where the energy values are for the dimer and isolated monomers, respectively. c EB is an estimate of the binding energy from spectroscopic data using the pseudodiatomic approximation; see text for details. d Ref. 15. e Ref. 16. f Currently in progress in our lab; the observed rotational spectrum appears to be consistent with a stacked structure. g The trans-1,2-DFE…CO2 rotational spectrum is expected to be weak since it is formed from two non-polar monomers. h This work. X…CO2 X = 𝐸 es 𝐸 ind 𝐸 disp 𝐸 ex 𝐸 SAPT a EMP2b (BSSE) EBc VF (side) –8.33 (52.0%) –1.34 (8.3%) –6.36 (39.7%) 8.33 –7.70 –6.41 –5.80(20)d VF (top) –7.78 (49.7%) –1.30 (8.2%) –6.61 (42.1%) 8.03 –7.66 –6.30 –6.13(10)d VF (stacked) –6.65 (42.5%) –0.96 (6.1%) –8.02 (51.3%) 8.43 –7.19 –6.44 –   1,1-DFE (top) –5.69 (44.8%) –1.00 (7.8%) –6.02 (47.4%) 6.49 –6.22 –5.10 –5.80(1)e 1,1-DFE (stacked) –4.43 (34.8%) –0.78 (6.1%) –7.50 (59.1%) 7.35 –5.35 –4.86 cis-1,2-DFE (side) –7.91 (51.0%) –1.34 (8.6%) –6.28 (40.5%) 7.99 –7.54 –6.33 –f cis-1,2-DFE (stacked) –7.29 (44.6%) –1.11 (6.8%) –7.96 (48.7%) 8.38 –7.97 –6.81 – f trans-1,2-DFE (side) –7.61 (50.6%) –1.21 (8.1%) –6.23 (41.3%) 7.87 –7.18 –6.03 – g trans-1,2-DFE (top) –7.99 (49.5%) –1.42 (8.8%) –6.74 (41.7%) 8.28 –7.87 –6.45 TFE (side) –7.61 (50.2%) –1.30 (8.5%) 7.82 –7.32 –6.16 –7.12(15)h TFE (top) –6.11 (45.7%) –1.21 (9.0%) –6.07 (45.3%) 6.78 –6.61 –5.39 TFE (stacked) –5.84 (41.2%) –0.87 (6.1%) –7.47 (52.7%) 7.52 –6.66 –5.69