Chemical synapses: post-synaptic mechanisms

Slides:



Advertisements
Similar presentations
Topic Nerves.
Advertisements

Mean = 75.1 sd = 12.4 range =
LECTURE 12 Graded Potentials Action Potential Generation
SYNAPSES AND NEURONAL INTEGRATION
LECTURE 9: INTEGRATION OF SYNAPTIC INPUTS (Ionotropic Receptors) REQUIRED READING: Kandel text, Chapter 12 At neuromuscular synapse, single axonal action.
Synaptic Transmission
Chemical synapses: post-synaptic mechanisms. Postsynaptic Membranes and ion channels Ligand gated ion channels – a review a. Resting K + channels: responsible.
Cellular Neuroscience (207) Ian Parker Lecture #13 – Postsynaptic excitation and inhibition.
Effects of Excitatory and Inhibitory Potentials on Action Potentials Amelia Lindgren.
Inhibitory and Excitatory Signals
Neural Condition: Synaptic Transmission
Nervous systems. Keywords (reading p ) Nervous system functions Structure of a neuron Sensory, motor, inter- neurons Membrane potential Sodium.
Synapses A. Neuromuscular Junction (typical ACh synapse) 1. arrival of action potential at terminal bulb triggers opening of voltage-gated Ca ++ channels.
PHYSIOLOGY 1 LECTURE 14 SYNAPTIC TRANSMISSION. n Objectives: The student should know –1. The types of synapses, electrical and chemical –2. The structure.
Action Potentials and Conduction. Neuron F8-2 Axons carry information from the cell body to the axon terminals. Axon terminals communicate with their.
Ch. 12 Nervous Tissue. Objectives Understand how the nervous system is divided and the types of cells that are found in nervous tissue Know the anatomy.
Taken from: Hodgkin and Huxley Taken from:
Nervous System: Part III What Happens at a Synapse?
Top Score = 101!!!! Ms. Grundvig 2nd top score = 99 Mr. Chapman 3rd top score = Ms. Rodzon Skewness = -.57.
Functional Human Physiology for the Exercise and Sport Sciences Synaptic Transmission and Neural Integration Jennifer L. Doherty, MS, ATC Department of.
The Nervous System Neuron –Cell body; Dendrites; Axon Three general groups of neurons –Sensory neurons (afferent or receptor) Receive the initial stimulus.
Unit 1B: Nerve Impulses and Synapses. Nerve Impulse A neuron’s job is to transmit a message to a muscle, gland, or another neuron The message travels.
Neural Zones.
Copyright © 2010 Pearson Education, Inc. The Synapse A junction that mediates information transfer from one neuron: To another neuron, or To an effector.
SYNAPTIC & NEUROMUSCULAR TRANSMISSION Ass. Prof. Dr. Emre Hamurtekin EMU Faculty of Pharmacy.
Sci2 Lect 5 Synaptic Transmission ©Dr Bill Phillips 2002, Dept of Physiology Fast Excitatory Postsynaptic Potentials Ligand gated ion channels Presynaptic.
Synaptic Transmission Classical –Mediated by Neurotransmitter Gated Ion Channel aka ionotropic receptors Neuromodulatory –Mediated by Metabotropic Receptors.
Anatomy and Physiology I Electrical Signals in Neurons Action Potentials The Synapse Instructor: Mary Holman.
Biology 211 Anatomy & Physiology I Dr. Thompson Electrophysiology.
Neurons & Nervous Systems. nervous systems connect distant parts of organisms; vary in complexity Figure 44.1.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Ch 48 – Neurons, Synapses, and Signaling Neurons transfer information.
Electrical signals Sodium ions Potassium ions Generate an action potential at the axon hillock Travels down the axon to the terminal – regenerating the.
Neurons, Synapses, and Signaling
THE NERVE IMPULSE. Cells and membrane potentials All animal cells generate a small voltage across their membranes This is because there is a large amount.
AP Biology Nervous Systems Part 3.  I. Synapses – These are the gaps between neurons or between neuron and effector cells.  A. There are two types of.
University of Jordan1 Physiology of Synapses in the CNS- L4 Faisal I. Mohammed, MD, PhD.
 Chapter 48 Gaby Gonzalez Joyce Kim Stephanie Kim.
37 Neurons, Synapses, and Signaling
Chapter 48: Nervous System
Nervous Tissue.
The Patch Clamp Method 1976 by Erwin Neher and Bert Sakmann at the Max Planck Institute in Goettingen.
NERVE CELLS by Grace Minter.
LECTURE 15 NEUROMUSCULAR JUNCTION
Chapter 37: Neurons, Synapses and Signaling FIGURE 37.1: CONE SNAIL!
Structure of a Neuron: At the dendrite the incoming
13.1 Overview of the nervous system
What happens when action potential reaches axon terminal?
Action Potential Propagation
NOTES - UNIT 5 part 2: Action Potential: Conducting an Impulse
AP Biology Nervous Systems Part 3.
Action Potentials and Conduction
Resting Potential, Ionic Concentrations, and Channels
Communication Within the Nervous System
At resting potential Most voltage-gated Na+ and K+ channels are closed, but some K+ channels (not voltage-gated) are open.
Interneuronal connections
2 primary cell types in nervous system
Capillary Neuron Astrocyte
10.6: Cell Membrane Potential
Effects of Excitatory and Inhibitory Potentials on Action Potentials
A junction that mediates information transfer from one neuron:
Synapses, properties & Transmission
Unit 5, Part 2 Notes – The Nervous System
Biology 211 Anatomy & Physiology I
Neural Signaling: Postsynaptic Potentials
Nervous system.
Functional Anatomy Excitatory Synapses Inhibitory Synapses
Synaptic Transmission and Integration
Electrical Signals, Sensory Systems, and Movement
Neural Condition: Synaptic Transmission
Cell to cell communication in the nervous system
Presentation transcript:

Chemical synapses: post-synaptic mechanisms

Postsynaptic Membranes and ion channels Ligand gated ion channels – a review Resting K+ channels: responsible for generating the resting potential across the membrane Voltage- gated channels: responsible for propagating action potentials along the axonal membrane Two types of ion channels in dendrites and cell bodies are responsible for generating electric signals in postsynaptic cells. (c) Has a site for binding a specific extracellular neurotransmitter (d) Coupled to a neurotransmitter receptor via a G protein.

More things to know about Ion channels All the ion channels in question have a common feature A pore that allows the ion(s) in question to flow across the lipid bilayer The pore is specific to a certain ion or ions Leak K+ channel only allows K+ ions to flow across the membrane Example: Acetylcholine (ACH) receptor allows Na+ to flow and the glycine receptor allows Cl- to flow through the channel Ligand gated ion channels are different than voltage-gated ion channels in that they are chemically gated ie via neurotransmitters Binding a small chemical triggers the opening of the ion channel i) Na+ channels - excitatory (generates an excitatory postsynaptic potential) ii) Cl- channels - inhibitory (generates an inhibitory postsynaptic potential)   Important: The specificity of a transmitter response is a function of the receptor type NOT the transmitter itself. (i.e. Ach can be excitatory when binding to one type of AchR (NMJ)) and inhibitory when binding to another type of receptor

Acetylcholine – general info Motor neuron transmitter at the neuromusccular junction (NMJ) in vertebrates Present in brain (10% of synapses) Packaged in high numbers in vesicles 1,000 to 10,000 molecules per vesicle at the NMJ Like all small chemical transmitters Ach is synthesized and packaged into vesicles in the synapse The NMJ pre-synaptic side is packed full of vesicles in the axon terminal Many vesicles are released per action potential to ensure a large safety margin so that the muscle fiber (i.e. the postsynaptic cell) will depolarize to beyond threshold.

Acetylcholine – receptor Officially called the nicotinic ACH receptor (nAChR) because nicotine binds to this receptor and activates it ligand gated ion channel has a depolarizing effect because Na+ is the dominant ion through these channels

Acetylcholine – receptor generates an excitatory postsynaptic potential which at the NMJ (motor end plate) is often called an "end plate potential“

EPP - end plate potential Aka Excitatory Junctional Potential (EJP) End plate potentials (EPPs) evoked by stimulation of a motor neuron are normally above threshold and therefore produce an action potential in the postsynaptic muscle cell.

nACHR – a closer look Most of the mass of the protein protrudes from the outer (synaptic) surface of the plasma membrane The M2 alpha helix (red) in each subunit is part of the lining of the ion channel Aspartate and glutamate side chains at both ends of each M2 helix form two rings of negative charges that help exclude anions from and attract cations to the channel. The gate, which is opened by binding of acetylcholine, lies within the pore. Aspartate

The Neuromuscular junction

The Neuromuscular junction

The Neuromuscular junction Arrival of an action potential at the terminus of a presynaptic motor neuron induces opening of voltage-gated Ca2+ channels subsequent release of acetylcholine, which triggers opening of the ligand-gated nicotinic receptors in the muscle plasma membrane The resulting influx of Na+ produces a localized depolarization of the membrane leading to opening of voltage-gated Na+ channels and generation of an action potential * * *

Synapses in the brain or central nervous system (CNS) A single synapse on a target is seldom found in brain Large neurons in the brain typically receive many inputs (1000 to 80,000 per cell) The inputs are integrated in the receiving neuron such that a "decision" is made to pass on the information onto other cells  - this "decision" is often whether or not to generate an action potential each synaptic input usually only gives only a small depolarization, so many inputs must cooperate (summate) to reach threshold to fire an action potential

EPSP An excitatory impulse, an excitatory post-synaptic potential raises the membrane potential above rest 1. An excitatory impulse at a synapse on the soma causes a depolarization of the whole soma including the beginning of the axon. This is because the diameter of the soma or cell body is so large that the internal resistance is very low so current flow extremely well through the cell body The beginning of the axon is also known as the spike initialization zone or axon hillock and is packed with Na+ channels, an epsp of +15 to +20 mV triggers an action potential in the zone 2. An epsp generated on a dendrite will diminish in strength by the time the current has reached the soma such that an epsp in a dendrite has less of a chance of triggering an action potential than an epsp generated at the soma Due to the absence of voltage-gated Na+ channels in the soma and dendrite of most neurons it is very unlikely that an action potential will be generated in these regions  

IPSP An inhibitory impulse is called an ipsp (inhibitory post-synaptic potential) and lowers the membrane potential below rest (hyperpolarizes) Synaptic transmission triggers the opening ligand gated Cl- channels or indirectly through other mechanisms the opening of K+ channels Cl- flows into the cell K+ flows out of the cell Both increase the negative charge within the cell, hyperpolarizes the soma Brings membrane potential further away from threshold and so it is harder to trigger an action potential therefore inhibitory An ipsp on the dendrite will have less effect due to current loss than an ipsp in the soma 

CNS Major ligand gated ion channels and their neurotransmitters Glutamate - amino acid Most common excitatory neurotransmitters in central nervous system Neurotransmitter of NMJ in invertebrates (locust, giant axon of squid) Glutamate receptor - at least 3 different ligand gated ion channel receptors for glutamate - all generate epsps as Na+ is the dominant ion that flows after the channel is open   GABA - aminobutyric acid Major inhibitory neurotransmitter in the brain In some areas of cortex 1 in 5 neurons are GABAergic GABA receptors - again many different types of receptors - the more common GABA receptors are Cl - channels - usually inhibitory causes an inhibitory postsynaptic potential (IPSP) - reversal potential is the same as ECl - usually around - 70 mV Note: reversal potential is synonymous with equilibrium potential   cont…..

CNS Glycine - simplest amino acid Major inhibitory neurotransmitter in the brainstem and spinal cord Glycine Receptor - major receptor is a Cl - channel - inhibitory - like GABA receptor in that usually causes IPSPs - blocked by strychnine (rat poison) which literally causes convulsions and death as now the motor neurons are not inhibited and the muscles contract without control. Yikes! 

Cable properties again Dendrites extend 0.5 to 1 mm in all directions from soma and receive signals from a large area 80-90% of all presynaptic terminals terminate on dendrites Most can't produce action potentials (too few or no Na+ channels) Transmit current by passive spread down dendrites to the soma Therefore the membrane potential decreases as move along dendrite due to current loss thanks to our friends ri, rm and cm Dendrites have no voltage gated Na+ channels and cell bodies ie soma have little or no voltage-gated Na+ channels current flow is solely dependent on the Cable Properties of the dendrites and soma

Things to remember 1) loss of current across membrane (leaky membranes) dependent on the internal resistance (ri) and the membrane resistance (rm) the length or space constant describes this property   2) loss of current (charge) due to capacitance properties of the membrane cell membrane acts as a capacitor it takes time and current (charge) to charge the membrane capacitor the time constant describes this effect   τ = Rm x Cm   details are in the lecture on cable properties 

Summation - CNS The postsynaptic effects of most synapses in the brain are not as large as those at the neuromuscular junction In the CNS the postsynaptic potentials are usually far below the threshold for generating postsynaptic action potentials Neurons in the central nervous system are typically innervated by thousands of synapses, and the postsynaptic potentials produced by each active synapse can summate together (in space and in time) to bring the membrane to threshold for firing an action potential

Motor neurons and summation Each motor neuron synapses with multiple muscle fibers The motor neuron and the fibers it contacts defines the motor unit

Summation Summation of multiple epsps to bring the membrane potential to threshold for an action potential.

Summation A microelectrode records the postsynaptic potentials produced by the activity of two excitatory synapses (E1 and E2) and an inhibitory synapse (I) Electrical responses to synaptic activation Stimulating either excitatory synapse (E1 or E2) produces a subthreshold EPSP, whereas stimulating both synapses at the same time (E1 + E2) produces a suprathreshold EPSP that evokes a postsynaptic action potential Activation of the inhibitory synapse alone (I) results in a hyperpolarizing IPSP Summing this IPSP with the EPSP produced by one excitatory synapse (E1 + I) reduces the amplitude of the EPSP, while summing it with the suprathreshold EPSP produced by activating synapses E1 and E2 keeps the postsynaptic neuron below threshold, so that no action potential is evoked.  

Summation