The Parabola 10.1.

Slides:



Advertisements
Similar presentations
The following are several definitions necessary for the understanding of parabolas. 1.) Parabola - A parabola is the set of all points that are equidistant.
Advertisements

Parabola.
Section 9.3 The Parabola.
Introduction A theorem is statement that is shown to be true. Some important theorems have names, such as the Pythagorean Theorem, but many theorems do.
9.1 Parabolas.
Unit 5 Conics... The parabola is the locus of all points in a plane that are the same distance from a line in the plane, the directrix, as from a fixed.
8.2 Graph and Write Equations of Parabolas
EXAMPLE 1 Graph an equation of a parabola SOLUTION STEP 1 Rewrite the equation in standard form x = – Write original equation Graph x = – y.
Chapter Parabolas. Objectives Write the standard equation of a parabola and its axis of symmetry. Graph a parabola and identify its focus, directrix,
Graph an equation of a parabola
Parabolas Section The parabola is the locus of all points in a plane that are the same distance from a line in the plane, the directrix, as from.
Recall that the equations for a parabola are given by ...
11.4 The Parabola. Parabola: the set of all points P in a plane that are equidistant from a fixed line and a fixed point not on the line. (directrix)
10.2 Parabolas What you should learn: Goal1 Goal2 Graph and write equations of parabolas. Identify the FOCUS and DIRECTRIX of the parabola Parabolas.
10.2 Parabolas By: L. Keali’i Alicea. Parabolas We have seen parabolas before. Can anyone tell me where? That’s right! Quadratics! Quadratics can take.
Quadratic Functions. The graph of any quadratic function is called a parabola. Parabolas are shaped like cups, as shown in the graph below. If the coefficient.
ALGEBRA 2 Write an equation for a graph that is the set of all points in the plane that are equidistant from point F(0, 1) and the line y = –1. You need.
10.2 Parabolas Where is the focus and directrix compared to the vertex? How do you know what direction a parabola opens? How do you write the equation.
6 minutes Warm-Up For each parabola, find an equation for the axis of symmetry and the coordinates of the vertex. State whether the parabola opens up.
Lesson 10-1 Graphing Quadratic Functions. Objectives Graph quadratic functions Find the equation of the axis of symmetry and the coordinates of the vertex.
9.2 THE PARABOLA. A parabola is defined as the collection of all points P in the plane that are the same distance from a fixed point F as they are from.
10.2 The Parabola. A parabola is defined as the collection of all points P in the plane that are the same distance from a fixed point F as they are from.
TH EDITION LIAL HORNSBY SCHNEIDER COLLEGE ALGEBRA.
Copyright © 2011 Pearson Education, Inc. The Parabola Section 7.1 The Conic Sections.
Advanced Geometry Conic Sections Lesson 3
Parabola  The set of all points that are equidistant from a given point (focus) and a given line (directrix).
The Parabola. Definition of a Parabola A Parabola is the set of all points in a plane that are equidistant from a fixed line (the directrix) and a fixed.
Warm-Up Exercises 1. Identify the axis of symmetry for the graph of y = 3x 2. ANSWER x = 0 2. Identify the vertex of the graph of y = 3x 2. ANSWER (0,
Objectives: You will be able to define parametric equations, graph curves parametrically, and solve application problems using parametric equations. Agenda:
Writing Equations of Parabolas
11.3 PARABOLAS Directrix (L): A line in a plane.
Section 9.1 Parabolas.
Coefficients a, b, and c are coefficients Examples: Find a, b, and c.
Chapter 6 Analytic Geometry. Chapter 6 Analytic Geometry.
10.1 Circles and Parabolas Conic Sections
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Warm Up circle hyperbola circle
Lesson 11 – 4 Day 1 The Parabola
Introduction A theorem is statement that is shown to be true. Some important theorems have names, such as the Pythagorean Theorem, but many theorems do.
Daily Warm Up Determine the vertex and axis of symmetry:
The Parabola Wednesday, November 21, 2018Wednesday, November 21, 2018
Vertex Form of Quadratics
Unit 2: Day 6 Continue  .
Day 137 – Equation of a parabola 2
Parabolas Warm Up Lesson Presentation Lesson Quiz
9.2 Graph & Write Equations of Parabolas
Parabolas 12-5 Warm Up Lesson Presentation Lesson Quiz
Section 9.3 The Parabola.
Focus of a Parabola Section 2.3.
Chapter 6: Analytic Geometry
Adapted from Walch Education
The Parabola.
Chapter 6: Analytic Geometry
Warm-up!!.
Parabolas Section
Parabolas.
Chapter 6: Analytic Geometry
10.2 Parabolas.
9.2 Graph and Write Equations of Parabolas
Warm-Up 1. Find the distance between (3, -3) and (-1, 5)
Conic Sections The Parabola.
Section 9.3 The Parabola.
Parabolas.
Section 9.3 The Parabola.
5.1 Parabolas a set of points whose distance to a fixed point (focus) equals it’s distance to a fixed line (directrix) A Parabola is -
5.1 Parabolas a set of points whose distance to a fixed point (focus) equals it’s distance to a fixed line (directrix) A Parabola is -
Parabolas a set of points whose distance to a fixed point (focus) equals it’s distance to a fixed line (directrix) A Parabola is -
Parabolas.
Important Idea Every point on the parabola is the same distance from the focus and the directrix.
Important Idea Every point on the parabola is the same distance from the focus and the directrix.
Presentation transcript:

The Parabola 10.1

Definition of a Parabola A Parabola is the set of all points in a plane that are equidistant from a fixed line (the directrix) and a fixed point (the focus) that is not on the line. Directrix Parabola Vertex Focus Axis of Symmetry

Standard Forms of the Parabola The standard form of the equation of a parabola with vertex at the origin is y2= 4px or x2 = 4py. The graph illustrates that for the equation on the left, the focus is on the x-axis, which is the axis of symmetry. For the equation of the right, the focus is on the y-axis, which is the axis of symmetry. x Directrix x = -p y 2 = 4px Vertex Focus (p, 0) y y Focus (0, p) x 2 = 4py Vertex x Directrix y = -p

Example Find the focus and directrix of the parabola given by: Solution: 4p = 16 p = 4 Focus (0,4) and directrix y=-4

Text Example Find the focus and directrix of the parabola given by x2 = -8y. Then graph the parabola. Solution The given equation is in the standard form x2 = 4py, so 4p = -8. x2 = -8y This is 4p. We can find both the focus and the directrix by finding p. 4p = -8 p = -2 The focus, on the y-axis, is at (0, p) and the directrix is given by y = - p.

Text Example cont. Find the focus and directrix of the parabola given by x2 = -8y. Then graph the parabola. Solution Because p < 0, the parabola opens downward. Using this value for p, we obtain Focus: (0, p) = (0, -2) Directrix: y = - p; y = 2. -5 -4 -3 -2 -1 1 2 3 4 5 (4, -2) (-4, -2) Vertex (0, 0) Directrix: y = 2 Focus (0, -2) To graph x2 = -8y, we assign y a value that makes the right side a perfect square. If y = -2, then x2 = -8(-2) = 16, so x is 4 and –4. The parabola passes through the points (4, -2) and (-4, -2).

Text Example cont. Find the standard form of the equation of a parabola with focus (5, 0) and directrix x = -5. Solution The focus is (5, 0). Thus, the focus is on the x-axis. We use the standard form of the equation in which x is not squared, namely y2 = 4px. y2 = 4 • 5x or y2 = 20x. -1 -5 -4 -3 -2 1 2 3 4 5 6 7 -6 -7 Focus (5, 0) Directrix: x = -5

Text Example Find the vertex, focus, and directrix of the parabola given by y2 + 2y + 12x – 23 = 0. Then graph the parabola. Solution We convert the given equation to standard form by completing the square on the variable y. We isolate the terms involving y on the left side. y2 + 2y + 12x – 23 = 0 This is the given equation. y2 + 2y = -12x + 23 Isolate the terms involving y. y2 + 2y + 1 = -12x + 23 + 1 Complete the square by adding the square of half the coefficient of y. (y + 1)2 = -12x + 24

Text Example cont. Solution To express this equation in the standard form (y – k)2 = 4p(x – h), we factor –12 on the right. The standard form of the parabola’s equation is (y + 1)2 = -12(x – 2) We use this form to identify the vertex, (h, k), and the value for p needed to locate the focus and the directrix. (y – (-1))2 = -12(x – 2) The equation is in standard form. Focus: (h + p, k) = (2 + (-3), -1) = (-1, -1) Directrix: x = h – p x = 2 – (-3) = 5 Thus, the focus is (-1, -1) and the directrix is x = 5.

Text Example cont. Solution To graph (y + 1)2 = -12(x – 2), we assign x a value that makes the right side of the equation a perfect square. If x = -1, the right side is 36. We will let x = -1 and solve for y to obtain points on the parabola. (y + 1)2 = -12(-1 – 2) Substitute –1 for x. (y + 1)2 = 36 Simplify. y + 1 = 6 or y + 1 = -6 Write as two separate equations. y = 5 or y = -7 Solve for y in each equation.

Text Example cont. Solution Because we obtained these values of y for x = -1, the parabola passes through the points (-1, 5) and (-1, -7). Passing a smooth curve through the vertex and these two points, we sketch the parabola below. -5 -4 -3 -2 1 3 4 6 7 5 2 -6 -7 Focus (-1, -1) Directrix: x = 5 Vertex (2, -1) (-1, -7) (-1, 5)